Spaces:
Running
on
Zero
Running
on
Zero
# Install FlashAttention | |
import subprocess | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
import base64 | |
from io import BytesIO | |
import re | |
from PIL import Image, ImageDraw | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct") | |
def pil2base64(image: Image.Image) -> str: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
def inference_fn( | |
image: Image.Image | None, | |
# progress=gr.Progress(track_tqdm=True), | |
) -> tuple[str, Image.Image | None]: | |
if image is None: | |
gr.Warning("Please upload an image!", duration=10) | |
return "Please upload an image!", None | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
"yuki-imajuku/Qwen2.5-VL-3B-Instruct-FT-Manga109-OCR-Panel-Onomatopoeia", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
device_map=device, | |
) | |
base64_image = pil2base64(image) | |
messages = [ | |
{"role": "user", "content": [ | |
{"type": "image", "image": f"data:image;base64,{base64_image}"}, | |
{"type": "text", "text": "With this image, please output the result of OCR with grounding."} | |
]}, | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(model.device) | |
generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
raw_output = processor.batch_decode( | |
generated_ids_trimmed, | |
skip_special_tokens=False, | |
clean_up_tokenization_spaces=False, | |
)[0] | |
print(raw_output) | |
result_image = image_inputs[0].copy() | |
draw = ImageDraw.Draw(result_image) | |
ocr_texts = [] | |
for ocr_text, ocr_quad in re.findall(r"<\|object_ref_start\|>(.+?)<\|object_ref_end\|><\|quad_start\|>([\d,]+)<\|quad_end\|>", raw_output): | |
ocr_texts.append(f"{ocr_text} -> {ocr_quad}") | |
quad = [int(x) for x in ocr_quad.split(",")] | |
for i in range(4): | |
start_point = quad[i*2:i*2+2] | |
end_point = quad[i*2+2:i*2+4] if i < 3 else quad[:2] | |
draw.line(start_point + end_point, fill="red", width=4) | |
ocr_texts_str = "\n".join(ocr_texts) | |
return ocr_texts_str, result_image | |
with gr.Blocks() as demo: | |
gr.Markdown("# Manga Panel OCR") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", image_mode="RGB", type="pil") | |
input_button = gr.Button(value="Submit") | |
with gr.Column(): | |
ocr_text = gr.Textbox(label="Result", lines=5) | |
ocr_image = gr.Image(label="OCR Result", type="pil", show_label=False) | |
input_button.click( | |
fn=inference_fn, | |
inputs=[input_image], | |
outputs=[ocr_text, ocr_image], | |
) | |
ocr_examples = gr.Examples( | |
examples=[], | |
fn=inference_fn, | |
inputs=[input_image], | |
outputs=[ocr_text, ocr_image], | |
cache_examples=False, | |
) | |
demo.queue().launch() | |