Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load models | |
implicit_cot_model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication' | |
implicit_cot_model = AutoModelForCausalLM.from_pretrained(implicit_cot_model_name) | |
tokenizer = AutoTokenizer.from_pretrained(implicit_cot_model_name) | |
no_cot_model_name = 'yuntian-deng/gpt2-no-cot-multiplication' | |
no_cot_model = AutoModelForCausalLM.from_pretrained(no_cot_model_name) | |
explicit_cot_model_name = 'yuntian-deng/gpt2-explicit-cot-multiplication' | |
explicit_cot_model = AutoModelForCausalLM.from_pretrained(explicit_cot_model_name) | |
models = {'implicit': implicit_cot_model, 'no': no_cot_model, 'explicit': explicit_cot_model} | |
# Constants | |
MAX_PRODUCT_DIGITS_PER_MODEL = {'implicit': 100, 'no': 100, 'explicit': 900} | |
def preprocess(num): | |
num = str(num).strip().replace(' ', '') | |
reversed_num = ' '.join(num[::-1]) | |
return reversed_num | |
def postprocess(raw_output): | |
prediction = raw_output.replace(' ', '')[::-1] | |
return prediction | |
def predict_product(num1, num2): | |
input_text = f'{preprocess(num1)} * {preprocess(num2)} =' | |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu') | |
[model.to('cuda' if torch.cuda.is_available() else 'cpu') for model in models.values()] | |
input_ids = inputs['input_ids'] | |
input_len = input_ids.shape[-1] | |
prediction = "" | |
ground_truth_product = "" | |
valid_input = True | |
try: | |
num1_int = int(num1) | |
num2_int = int(num2) | |
ground_truth_product = str(num1_int * num2_int) | |
ground_truth_digits_reversed = list(ground_truth_product)[::-1] | |
except ValueError: | |
valid_input = False | |
generated_ids_per_model = {model_name: inputs['input_ids'].data.clone() for model_name in models} | |
finished_per_model = {model_name: False for model_name in models} | |
past_key_values_per_model = {model_name: None for model_name in models} | |
predicted_annotations_per_model = {} | |
for step in range(max(MAX_PRODUCT_DIGITS_PER_MODEL.values())): # Set a maximum limit to prevent infinite loops | |
# Ground Truth | |
ground_truth_annotations = [(ground_truth_digit, None) for ground_truth_digit in ground_truth_digits_reversed[:step+1]] | |
ground_truth_annotations = ground_truth_annotations[::-1] | |
# Predicted | |
for model_name in models: | |
model = models[model_name] | |
if finished_per_model[model_name]: | |
continue | |
if step >= MAX_PRODUCT_DIGITS_PER_MODEL[model_name]: | |
continue | |
generation_kwargs = { | |
'input_ids': generated_ids_per_model[model_name], | |
'max_new_tokens': 1, | |
'do_sample': False, | |
'past_key_values': past_key_values_per_model[model_name], | |
'return_dict_in_generate': True, | |
'use_cache': True | |
} | |
if step == 0: | |
del generation_kwargs['past_key_values'] | |
outputs = model.generate(**generation_kwargs) | |
generated_ids = outputs.sequences | |
next_token_id = generated_ids[0, -1] | |
print (next_token_id) | |
if next_token_id.item() == tokenizer.eos_token_id: | |
finished_per_model[model_name] = True | |
continue | |
generated_ids_per_model[model_name] = generated_ids | |
past_key_values_per_model[model_name] = outputs.past_key_values | |
output_text = tokenizer.decode(generated_ids[0, input_len:], skip_special_tokens=True) | |
predicted_digits_reversed = output_text.strip().split(' ') | |
predicted_annotations = [] | |
is_correct_sofar = True | |
for i in range(len(predicted_digits_reversed)): | |
predicted_digit = predicted_digits_reversed[i] | |
ground_truth_digit = ground_truth_digits_reversed[i] | |
if i >= len(ground_truth_digits_reversed): | |
if predicted_digit == '0' and is_correct_sofar: | |
is_correct_digit = True | |
else: | |
is_correct_digit = False | |
else: | |
if predicted_digit == ground_truth_digit: | |
is_correct_digit = True | |
else: | |
is_correct_digit = False | |
if not is_correct_digit: | |
is_correct_sofar = False | |
if is_correct_digit: | |
predicted_annotations.append((predicted_digit, "correct")) | |
else: | |
predicted_annotations.append((predicted_digit, "wrong")) | |
predicted_annotations = predicted_annotations[::-1] | |
predicted_annotations_per_model[model_name] = predicted_annotations | |
predicted_annotations_implicit_cot = predicted_annotations_per_model['implicit'] | |
predicted_annotations_nocot = predicted_annotations_per_model['no'] | |
predicted_annotations_explicit_cot = predicted_annotations_per_model['explicit'] | |
yield ground_truth_annotations, predicted_annotations_implicit_cot, predicted_annotations_nocot, predicted_annotations_explicit_cot | |
color_map = {"correct": "green", "wrong": "red"} | |
demo = gr.Interface( | |
fn=predict_product, | |
inputs=[ | |
gr.Textbox(label='First Number (up to 12 digits)', value='123456789'), | |
gr.Textbox(label='Second Number (up to 12 digits)', value='987654321'), | |
], | |
outputs=[ | |
gr.HighlightedText(label='Ground Truth Product', combine_adjacent=False, show_legend=False, color_map=color_map), | |
gr.HighlightedText(label='Implicit CoT Predicted Product', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False), | |
gr.HighlightedText(label='No CoT Predicted Product', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False), | |
gr.HighlightedText(label='Explicit CoT Predicted Product', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False), | |
], | |
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)', | |
description='This demo uses GPT2 to directly predict the product of two numbers without using any intermediate reasoning steps. The GPT2 model has been fine-tuned to internalize chain-of-thought reasoning within its hidden states, following our stepwise internalization approach detailed in the paper linked at the bottom of this page.', | |
article=""" | |
- [Paper: From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step](https://arxiv.org/pdf/2405.14838) | |
- [Code Repository](https://github.com/da03/Internalize_CoT_Step_by_Step) | |
- [Tweet Announcement](https://twitter.com/yuntiandeng/status/1795854740879774036) | |
""", | |
clear_btn=None, | |
submit_btn="Multiply!", | |
live=False | |
) | |
demo.launch() | |