Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
def sdp_attention(query, key, value, mask): | |
matmul_qk = tf.matmul(query, key, transpose_b=True) | |
depth = tf.cast(tf.shape(key)[-1], tf.float32) | |
logits = matmul_qk / tf.math.sqrt(depth) | |
if mask is not None: | |
logits += mask * -1e9 | |
attention_weights = tf.nn.softmax(logits, axis=-1) | |
output = tf.matmul(attention_weights, value) | |
return output | |
class MultiHeadAttention(tf.keras.layers.Layer): | |
def __init__(self, num_heads, d_model, **kwargs): | |
assert d_model % num_heads == 0 | |
super(MultiHeadAttention, self).__init__(**kwargs) | |
self.num_heads = num_heads | |
self.d_model = d_model | |
self.depth = self.d_model // self.num_heads | |
self.query_dense = tf.keras.layers.Dense(self.d_model) | |
self.key_dense = tf.keras.layers.Dense(self.d_model) | |
self.value_dense = tf.keras.layers.Dense(self.d_model) | |
self.dense = tf.keras.layers.Dense(self.d_model) | |
def get_config(self): | |
config = super(MultiHeadAttention, self).get_config() | |
config.update({"num_heads": self.num_heads, "d_model": self.d_model}) | |
return config | |
def split_heads(self, inputs: tf.Tensor, batch_size: int): | |
inputs = tf.keras.layers.Lambda( | |
lambda inputs: tf.reshape( | |
inputs, shape=(batch_size, -1, self.num_heads, self.depth)) | |
)(inputs) | |
return tf.keras.layers.Lambda( | |
lambda inputs: tf.transpose(inputs, perm=[0, 2, 1, 3]) | |
)(inputs) | |
def call(self, inputs: tf.Tensor): | |
query, key, value, mask = ( | |
inputs["query"], | |
inputs["key"], | |
inputs["value"], | |
inputs["mask"], | |
) | |
batch_size = tf.shape(query)[0] | |
query = self.query_dense(query) | |
key = self.key_dense(key) | |
value = self.value_dense(value) | |
query = self.split_heads(query, batch_size) | |
key = self.split_heads(key, batch_size) | |
value = self.split_heads(value, batch_size) | |
scaled_attention = sdp_attention(query, key, value, mask) | |
scaled_attention = tf.keras.layers.Lambda( | |
lambda scaled_attention: tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) | |
)(scaled_attention) | |
concat_attention = tf.keras.layers.Lambda( | |
lambda scaled_attention: tf.reshape( | |
scaled_attention, (batch_size, -1, self.d_model) | |
) | |
)(scaled_attention) | |
outputs = self.dense(concat_attention) | |
return outputs | |
def create_padding_mask(x): | |
mask = tf.cast(tf.math.equal(x, 0), dtype=tf.float32) | |
return mask[:, tf.newaxis, tf.newaxis, :] | |
def create_look_ahead_mask(x): | |
seq_len = tf.shape(x)[1] | |
look_ahead_mask = 1 - tf.linalg.band_part( | |
tf.ones((seq_len, seq_len), dtype=tf.float32), -1, 0 | |
) | |
padding_mask = create_padding_mask(x) | |
return tf.maximum(look_ahead_mask, padding_mask) | |
class PositionalEncoding(tf.keras.layers.Layer): | |
def __init__(self, position: int, d_model: int, **kwargs): | |
super(PositionalEncoding, self).__init__(**kwargs) | |
self.position = position | |
self.d_model = d_model | |
self.pos_encoding = self.positional_encoding(position, d_model) | |
def get_config(self): | |
config = super(PositionalEncoding, self).get_config() | |
config.update({"position": self.position, "d_model": self.d_model}) | |
return config | |
def get_angles(self, position: tf.Tensor, i: tf.Tensor, d_model: tf.Tensor): | |
angles = 1 / tf.pow(10000, (2 * (i // 2)) / d_model) | |
return position * angles | |
def positional_encoding(self, position: int, d_model: int): | |
angle_rads = self.get_angles( | |
position=tf.cast(tf.range(position)[:, tf.newaxis], dtype=tf.float32), | |
i=tf.cast(tf.range(d_model)[tf.newaxis, :], dtype=tf.float32), | |
d_model=tf.cast(d_model, dtype=tf.float32), | |
) | |
sines = tf.math.sin(angle_rads[:, 0::2]) | |
cosines = tf.math.cos(angle_rads[:, 1::2]) | |
pos_encoding = tf.concat([sines, cosines], axis=-1) | |
pos_encoding = pos_encoding[tf.newaxis, ...] | |
return pos_encoding | |
def call(self, inputs: tf.Tensor): | |
return inputs + self.pos_encoding[:, : tf.shape(inputs)[1], :] | |
def encoder_layer(hparams, name: str = "encoder_layer"): | |
inputs = tf.keras.Input(shape=(None, hparams.d_model), name="inputs") | |
padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask") | |
attention = MultiHeadAttention( | |
num_heads=hparams.num_heads, d_model=hparams.d_model, name="attention" | |
)({"query": inputs, "key": inputs, "value": inputs, "mask": padding_mask}) | |
attention = tf.keras.layers.Dropout(hparams.dropout)(attention) | |
attention += tf.cast(inputs, dtype=tf.float32) | |
attention = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention) | |
outputs = tf.keras.layers.Dense(hparams.num_units, activation=hparams.activation)( | |
attention | |
) | |
outputs = tf.keras.layers.Dense(hparams.d_model)(outputs) | |
outputs = tf.keras.layers.Dropout(hparams.dropout)(outputs) | |
outputs += attention | |
outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(outputs) | |
return tf.keras.Model(inputs=[inputs, padding_mask], outputs=outputs, name=name) | |
def encoder(hparams, name: str = "encoder"): | |
inputs = tf.keras.Input(shape=(None,), name="inputs") | |
padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask") | |
embeddings = tf.keras.layers.Embedding(hparams.vocab_size, hparams.d_model)(inputs) | |
embeddings *= tf.math.sqrt(tf.cast(hparams.d_model, dtype=tf.float32)) | |
embeddings = PositionalEncoding( | |
position=hparams.vocab_size, d_model=hparams.d_model | |
)(embeddings) | |
outputs = tf.keras.layers.Dropout(hparams.dropout)(embeddings) | |
for i in range(hparams.num_layers): | |
outputs = encoder_layer(hparams, name=f"encoder_layer_{i}")( | |
[outputs, padding_mask] | |
) | |
return tf.keras.Model(inputs=[inputs, padding_mask], outputs=outputs, name=name) | |
def decoder_layer(hparams, name: str = "decoder_layer"): | |
inputs = tf.keras.Input(shape=(None, hparams.d_model), name="inputs") | |
enc_outputs = tf.keras.Input(shape=(None, hparams.d_model), name="encoder_outputs") | |
look_ahead_mask = tf.keras.Input(shape=(1, None, None), name="look_ahead_mask") | |
padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask") | |
attention1 = MultiHeadAttention( | |
num_heads=hparams.num_heads, d_model=hparams.d_model, name="attention_1" | |
)( | |
inputs={ | |
"query": inputs, | |
"key": inputs, | |
"value": inputs, | |
"mask": look_ahead_mask, | |
} | |
) | |
attention1 += tf.cast(inputs, dtype=tf.float32) | |
attention1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention1) | |
attention2 = MultiHeadAttention( | |
num_heads=hparams.num_heads, d_model=hparams.d_model, name="attention_2" | |
)( | |
inputs={ | |
"query": attention1, | |
"key": enc_outputs, | |
"value": enc_outputs, | |
"mask": padding_mask, | |
} | |
) | |
attention2 = tf.keras.layers.Dropout(hparams.dropout)(attention2) | |
attention2 += attention1 | |
attention2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)( | |
attention2 + attention1 | |
) | |
outputs = tf.keras.layers.Dense(hparams.num_units, activation=hparams.activation)( | |
attention2 | |
) | |
outputs = tf.keras.layers.Dense(hparams.d_model)(outputs) | |
outputs = tf.keras.layers.Dropout(hparams.dropout)(outputs) | |
outputs += attention2 | |
outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(outputs) | |
return tf.keras.Model( | |
inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask], | |
outputs=outputs, | |
name=name, | |
) | |
def decoder(hparams, name: str = "decoder"): | |
inputs = tf.keras.Input(shape=(None,), name="inputs") | |
enc_outputs = tf.keras.Input(shape=(None, hparams.d_model), name="encoder_outputs") | |
look_ahead_mask = tf.keras.Input(shape=(1, None, None), name="look_ahead_mask") | |
padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask") | |
embeddings = tf.keras.layers.Embedding(hparams.vocab_size, hparams.d_model)(inputs) | |
embeddings *= tf.math.sqrt(tf.cast(hparams.d_model, dtype=tf.float32)) | |
embeddings = PositionalEncoding( | |
position=hparams.vocab_size, d_model=hparams.d_model | |
)(embeddings) | |
outputs = tf.keras.layers.Dropout(hparams.dropout)(embeddings) | |
for i in range(hparams.num_layers): | |
outputs = decoder_layer( | |
hparams, | |
name="decoder_layer_{}".format(i), | |
)(inputs=[outputs, enc_outputs, look_ahead_mask, padding_mask]) | |
return tf.keras.Model( | |
inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask], | |
outputs=outputs, | |
name=name, | |
) | |
def transformer(hparams, name: str = "transformer"): | |
inputs = tf.keras.Input(shape=(None,), name="inputs") | |
dec_inputs = tf.keras.Input(shape=(None,), name="dec_inputs") | |
enc_padding_mask = tf.keras.layers.Lambda( | |
create_padding_mask, output_shape=(1, 1, None), name="enc_padding_mask" | |
)(inputs) | |
look_ahead_mask = tf.keras.layers.Lambda( | |
create_look_ahead_mask, output_shape=(1, None, None), name="look_ahead_mask" | |
)(dec_inputs) | |
dec_padding_mask = tf.keras.layers.Lambda( | |
create_padding_mask, output_shape=(1, 1, None), name="dec_padding_mask" | |
)(inputs) | |
enc_outputs = encoder(hparams)(inputs=[inputs, enc_padding_mask]) | |
dec_outputs = decoder(hparams)( | |
inputs=[dec_inputs, enc_outputs, look_ahead_mask, dec_padding_mask] | |
) | |
outputs = tf.keras.layers.Dense(hparams.vocab_size, name="outputs")(dec_outputs) | |
return tf.keras.Model(inputs=[inputs, dec_inputs], outputs=outputs, name=name) | |