Spaces:
Running
Running
File size: 1,355 Bytes
03f6091 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import json
import shutil
import os
from polos.metrics.regression_metrics import RegressionReport
from polos.models import load_checkpoint
from tqdm import tqdm
import json
from polos.models import download_model, load_checkpoint, model2download, str2model
from polos.trainer import TrainerConfig, build_trainer
import yaml
from utils import *
from dataset import *
def compute_polos_coef(args,test_dataset,dataset_name,kendall_type):
yprint("Compute Polos ...")
rep = RegressionReport(kendall_type)
if args.model:
model = load_checkpoint(args.model)
elif args.hparams:
yaml_file = yaml.load(open(args.hparams).read(), Loader=yaml.FullLoader)
train_configs = TrainerConfig(yaml_file)
model_config = str2model[train_configs.model].ModelConfig(yaml_file)
print(str2model[train_configs.model].ModelConfig)
print(model_config.namespace())
model = str2model[train_configs.model](model_config.namespace())
model.eval()
model.freeze()
data = []
gt_scores = []
for data_ in (pbar := tqdm(test_dataset)):
pbar.set_description("Prepare dataset ...")
data.append(data_)
gt_scores.append(data_["score"])
_, sys_score = model.predict(data,cuda=True,batch_size=32)
coef = rep.compute(sys_score, gt_scores)
return coef |