Spaces:
Running
Running
import argparse | |
import torch | |
import evaluation | |
import scipy.stats | |
from models.clip import clip | |
from utils import collate_fn | |
from evaluation import PACScore, RefPACScore | |
from models import open_clip | |
from data import Flickr8k | |
from torch.utils.data import DataLoader | |
_MODELS = { | |
"ViT-B/32": "checkpoints/clip_ViT-B-32.pth", | |
"open_clip_ViT-L/14": "checkpoints/openClip_ViT-L-14.pth" | |
} | |
def compute_correlation_scores(dataloader, model, preprocess, args): | |
gen = {} | |
gts = {} | |
human_scores = list() | |
ims_cs = list() | |
gen_cs = list() | |
gts_cs = list() | |
all_scores = dict() | |
model.eval() | |
for it, (images, candidates, references, scores) in enumerate(iter(dataloader)): | |
for i, (im_i, gts_i, gen_i, score_i) in enumerate(zip(images, references, candidates, scores)): | |
gen['%d_%d' % (it, i)] = [gen_i, ] | |
gts['%d_%d' % (it, i)] = gts_i | |
ims_cs.append(im_i) | |
gen_cs.append(gen_i) | |
gts_cs.append(gts_i) | |
human_scores.append(score_i) | |
gts = evaluation.PTBTokenizer.tokenize(gts) | |
gen = evaluation.PTBTokenizer.tokenize(gen) | |
all_scores_metrics = evaluation.get_all_metrics(gts, gen, return_per_cap=True) | |
for k, v in all_scores_metrics.items(): | |
if k == 'BLEU': | |
all_scores['BLEU-1'] = v[0] | |
all_scores['BLEU-4'] = v[-1] | |
else: | |
all_scores[k] = v | |
# PAC-S | |
_, pac_scores, candidate_feats, len_candidates = PACScore(model, preprocess, ims_cs, gen_cs, device, w=2.0) | |
all_scores['PAC-S'] = pac_scores | |
# RefPAC-S | |
if args.compute_refpac: | |
_, per_instance_text_text = RefPACScore(model, gts_cs, candidate_feats, device, torch.tensor(len_candidates)) | |
refpac_scores = 2 * pac_scores * per_instance_text_text / (pac_scores + per_instance_text_text) | |
all_scores['RefPAC-S'] = refpac_scores | |
for k, v in all_scores.items(): | |
kendalltau_b = 100 * scipy.stats.kendalltau(v, human_scores, variant='b')[0] | |
kendalltau_c = 100 * scipy.stats.kendalltau(v, human_scores, variant='c')[0] | |
print('%s \t Kendall Tau-b: %.3f \t Kendall Tau-c: %.3f' | |
% (k, kendalltau_b, kendalltau_c)) | |
def compute_scores(model, preprocess, args): | |
args.datasets = ['flickr8k_expert', 'flickr8k_cf'] | |
args.batch_size_compute_score = 10 | |
for d in args.datasets: | |
print("Computing correlation scores on dataset: " + d) | |
if d == 'flickr8k_expert': | |
dataset = Flickr8k(json_file='flickr8k.json') | |
dataloader = DataLoader(dataset, batch_size=args.batch_size_compute_score, shuffle=False, collate_fn=collate_fn) | |
elif d == 'flickr8k_cf': | |
dataset = Flickr8k(json_file='crowdflower_flickr8k.json') | |
dataloader = DataLoader(dataset, batch_size=args.batch_size_compute_score, shuffle=False, collate_fn=collate_fn) | |
compute_correlation_scores(dataloader, model, preprocess, args) | |
if __name__ == '__main__': | |
# Argument parsing | |
parser = argparse.ArgumentParser(description='PAC-S evaluation') | |
parser.add_argument('--clip_model', type=str, default='ViT-B/32', | |
choices=['ViT-B/32', 'open_clip_ViT-L/14']) | |
parser.add_argument('--compute_refpac', action='store_true') | |
args = parser.parse_args() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if args.clip_model.startswith('open_clip'): | |
print("Using Open CLIP Model: " + args.clip_model) | |
model, _, preprocess = open_clip.create_model_and_transforms('ViT-L-14', pretrained='laion2b_s32b_b82k') | |
else: | |
print("Using CLIP Model: " + args.clip_model) | |
model, preprocess = clip.load(args.clip_model, device=device) | |
model = model.to(device) | |
model = model.float() | |
checkpoint = torch.load(_MODELS[args.clip_model]) | |
model.load_state_dict(checkpoint['state_dict']) | |
model.eval() | |
compute_scores(model, preprocess, args) | |