yuwd's picture
init
03f6091
'''
Automatic generation evaluation metrics wrapper
The most useful function here is
get_all_metrics(refs, cands)
'''
from .pac_score import PACScore, RefPACScore
from .tokenizer import PTBTokenizer
from pycocoevalcap.meteor.meteor import Meteor
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.cider.cider import Cider
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.spice.spice import Spice
def get_all_metrics(refs, cands, return_per_cap=False):
metrics = []
names = []
pycoco_eval_cap_scorers = [(Bleu(4), 'BLEU'),
(Meteor(), 'METEOR'),
(Rouge(), 'ROUGE'),
(Cider(), 'CIDER'),
# (Spice(), 'SPICE')
]
for scorer, name in pycoco_eval_cap_scorers:
overall, per_cap = pycoco_eval(scorer, refs, cands)
if return_per_cap:
metrics.append(per_cap)
else:
metrics.append(overall)
names.append(name)
metrics = dict(zip(names, metrics))
return metrics
def pycoco_eval(scorer, refs, cands):
'''
scorer is assumed to have a compute_score function.
refs is a list of lists of strings
cands is a list of predictions
'''
average_score, scores = scorer.compute_score(refs, cands)
return average_score, scores