Spaces:
Sleeping
Sleeping
import json | |
import logging | |
import os | |
import pathlib | |
import re | |
from copy import deepcopy | |
from pathlib import Path | |
from typing import Optional, Tuple | |
import torch | |
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
from .model import CLIP, convert_weights_to_fp16, resize_pos_embed | |
from .openai import load_openai_model | |
from .pretrained import get_pretrained_cfg, download_pretrained | |
from .transform import image_transform | |
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] | |
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs | |
def _natural_key(string_): | |
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] | |
def _rescan_model_configs(): | |
global _MODEL_CONFIGS | |
config_ext = ('.json',) | |
config_files = [] | |
for config_path in _MODEL_CONFIG_PATHS: | |
if config_path.is_file() and config_path.suffix in config_ext: | |
config_files.append(config_path) | |
elif config_path.is_dir(): | |
for ext in config_ext: | |
config_files.extend(config_path.glob(f'*{ext}')) | |
for cf in config_files: | |
with open(cf, 'r') as f: | |
model_cfg = json.load(f) | |
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): | |
_MODEL_CONFIGS[cf.stem] = model_cfg | |
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} | |
_rescan_model_configs() # initial populate of model config registry | |
def load_state_dict(checkpoint_path: str, map_location='cpu'): | |
checkpoint = torch.load(checkpoint_path, map_location=map_location) | |
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: | |
state_dict = checkpoint['state_dict'] | |
else: | |
state_dict = checkpoint | |
if next(iter(state_dict.items()))[0].startswith('module'): | |
state_dict = {k[7:]: v for k, v in state_dict.items()} | |
return state_dict | |
def load_checkpoint(model, checkpoint_path, strict=True): | |
state_dict = load_state_dict(checkpoint_path) | |
resize_pos_embed(state_dict, model) | |
incompatible_keys = model.load_state_dict(state_dict, strict=strict) | |
return incompatible_keys | |
def create_model( | |
model_name: str, | |
pretrained: str = '', | |
precision: str = 'fp32', | |
device: torch.device = torch.device('cpu'), | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
pretrained_image: bool = False, | |
cache_dir: Optional[str] = None, | |
): | |
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names | |
if pretrained.lower() == 'openai': | |
logging.info(f'Loading pretrained {model_name} from OpenAI.') | |
model = load_openai_model(model_name, device=device, jit=jit, cache_dir=cache_dir) | |
# See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372 | |
if precision == "amp" or precision == "fp32": | |
model = model.float() | |
else: | |
if model_name in _MODEL_CONFIGS: | |
logging.info(f'Loading {model_name} model config.') | |
model_cfg = deepcopy(_MODEL_CONFIGS[model_name]) | |
else: | |
logging.error(f'Model config for {model_name} not found; available models {list_models()}.') | |
raise RuntimeError(f'Model config for {model_name} not found.') | |
if force_quick_gelu: | |
# override for use of QuickGELU on non-OpenAI transformer models | |
model_cfg["quick_gelu"] = True | |
if pretrained_image: | |
if 'timm_model_name' in model_cfg.get('vision_cfg', {}): | |
# pretrained weight loading for timm models set via vision_cfg | |
model_cfg['vision_cfg']['timm_model_pretrained'] = True | |
else: | |
assert False, 'pretrained image towers currently only supported for timm models' | |
model = CLIP(**model_cfg) | |
pretrained_cfg = {} | |
if pretrained: | |
checkpoint_path = '' | |
pretrained_cfg = get_pretrained_cfg(model_name, pretrained) | |
if pretrained_cfg: | |
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) | |
elif os.path.exists(pretrained): | |
checkpoint_path = pretrained | |
if checkpoint_path: | |
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') | |
load_checkpoint(model, checkpoint_path) | |
else: | |
logging.warning(f'Pretrained weights ({pretrained}) not found for model {model_name}.') | |
raise RuntimeError(f'Pretrained weights ({pretrained}) not found for model {model_name}.') | |
model.to(device=device) | |
if precision == "fp16": | |
assert device.type != 'cpu' | |
convert_weights_to_fp16(model) | |
# set image / mean metadata from pretrained_cfg if available, or use default | |
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN | |
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD | |
if jit: | |
model = torch.jit.script(model) | |
return model | |
def create_model_and_transforms( | |
model_name: str, | |
pretrained: str = '', | |
precision: str = 'fp32', | |
device: torch.device = torch.device('cpu'), | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
pretrained_image: bool = False, | |
image_mean: Optional[Tuple[float, ...]] = None, | |
image_std: Optional[Tuple[float, ...]] = None, | |
cache_dir: Optional[str] = None, | |
): | |
model = create_model( | |
model_name, pretrained, precision, device, jit, | |
force_quick_gelu=force_quick_gelu, | |
pretrained_image=pretrained_image, | |
cache_dir=cache_dir) | |
image_mean = image_mean or getattr(model.visual, 'image_mean', None) | |
image_std = image_std or getattr(model.visual, 'image_std', None) | |
preprocess_train = image_transform(model.visual.image_size, is_train=True, mean=image_mean, std=image_std) | |
preprocess_val = image_transform(model.visual.image_size, is_train=False, mean=image_mean, std=image_std) | |
return model, preprocess_train, preprocess_val | |
def list_models(): | |
""" enumerate available model architectures based on config files """ | |
return list(_MODEL_CONFIGS.keys()) | |
def add_model_config(path): | |
""" add model config path or file and update registry """ | |
if not isinstance(path, Path): | |
path = Path(path) | |
_MODEL_CONFIG_PATHS.append(path) | |
_rescan_model_configs() | |