Spaces:
Sleeping
Sleeping
""" CLIP Model | |
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. | |
""" | |
from collections import OrderedDict | |
from dataclasses import dataclass | |
import logging | |
import math | |
from typing import Tuple, Union, Callable, Optional | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.utils.checkpoint import checkpoint | |
from .timm_model import TimmModel | |
from .utils import freeze_batch_norm_2d, to_2tuple | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1): | |
super().__init__() | |
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 | |
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.act1 = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.act2 = nn.ReLU(inplace=True) | |
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.act3 = nn.ReLU(inplace=True) | |
self.downsample = None | |
self.stride = stride | |
if stride > 1 or inplanes != planes * Bottleneck.expansion: | |
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 | |
self.downsample = nn.Sequential(OrderedDict([ | |
("-1", nn.AvgPool2d(stride)), | |
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), | |
("1", nn.BatchNorm2d(planes * self.expansion)) | |
])) | |
def forward(self, x: torch.Tensor): | |
identity = x | |
out = self.act1(self.bn1(self.conv1(x))) | |
out = self.act2(self.bn2(self.conv2(out))) | |
out = self.avgpool(out) | |
out = self.bn3(self.conv3(out)) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.act3(out) | |
return out | |
class AttentionPool2d(nn.Module): | |
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): | |
super().__init__() | |
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) | |
self.k_proj = nn.Linear(embed_dim, embed_dim) | |
self.q_proj = nn.Linear(embed_dim, embed_dim) | |
self.v_proj = nn.Linear(embed_dim, embed_dim) | |
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) | |
self.num_heads = num_heads | |
def forward(self, x): | |
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC | |
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC | |
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC | |
x, _ = F.multi_head_attention_forward( | |
query=x, key=x, value=x, | |
embed_dim_to_check=x.shape[-1], | |
num_heads=self.num_heads, | |
q_proj_weight=self.q_proj.weight, | |
k_proj_weight=self.k_proj.weight, | |
v_proj_weight=self.v_proj.weight, | |
in_proj_weight=None, | |
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), | |
bias_k=None, | |
bias_v=None, | |
add_zero_attn=False, | |
dropout_p=0, | |
out_proj_weight=self.c_proj.weight, | |
out_proj_bias=self.c_proj.bias, | |
use_separate_proj_weight=True, | |
training=self.training, | |
need_weights=False | |
) | |
return x[0] | |
class ModifiedResNet(nn.Module): | |
""" | |
A ResNet class that is similar to torchvision's but contains the following changes: | |
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. | |
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 | |
- The final pooling layer is a QKV attention instead of an average pool | |
""" | |
def __init__(self, layers, output_dim, heads, image_size=224, width=64): | |
super().__init__() | |
self.output_dim = output_dim | |
self.image_size = image_size | |
# the 3-layer stem | |
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(width // 2) | |
self.act1 = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(width // 2) | |
self.act2 = nn.ReLU(inplace=True) | |
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(width) | |
self.act3 = nn.ReLU(inplace=True) | |
self.avgpool = nn.AvgPool2d(2) | |
# residual layers | |
self._inplanes = width # this is a *mutable* variable used during construction | |
self.layer1 = self._make_layer(width, layers[0]) | |
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) | |
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) | |
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) | |
embed_dim = width * 32 # the ResNet feature dimension | |
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) | |
self.init_parameters() | |
def _make_layer(self, planes, blocks, stride=1): | |
layers = [Bottleneck(self._inplanes, planes, stride)] | |
self._inplanes = planes * Bottleneck.expansion | |
for _ in range(1, blocks): | |
layers.append(Bottleneck(self._inplanes, planes)) | |
return nn.Sequential(*layers) | |
def init_parameters(self): | |
if self.attnpool is not None: | |
std = self.attnpool.c_proj.in_features ** -0.5 | |
nn.init.normal_(self.attnpool.q_proj.weight, std=std) | |
nn.init.normal_(self.attnpool.k_proj.weight, std=std) | |
nn.init.normal_(self.attnpool.v_proj.weight, std=std) | |
nn.init.normal_(self.attnpool.c_proj.weight, std=std) | |
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: | |
for name, param in resnet_block.named_parameters(): | |
if name.endswith("bn3.weight"): | |
nn.init.zeros_(param) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
assert unlocked_groups == 0, 'partial locking not currently supported for this model' | |
for param in self.parameters(): | |
param.requires_grad = False | |
if freeze_bn_stats: | |
freeze_batch_norm_2d(self) | |
def set_grad_checkpointing(self, enable=True): | |
# FIXME support for non-transformer | |
pass | |
def stem(self, x): | |
x = self.act1(self.bn1(self.conv1(x))) | |
x = self.act2(self.bn2(self.conv2(x))) | |
x = self.act3(self.bn3(self.conv3(x))) | |
x = self.avgpool(x) | |
return x | |
def forward(self, x): | |
x = self.stem(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.attnpool(x) | |
return x | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
return x.to(orig_type) | |
class QuickGELU(nn.Module): | |
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=True, | |
scaled_cosine=False, | |
scale_heads=False, | |
logit_scale_max=math.log(1. / 0.01), | |
attn_drop=0., | |
proj_drop=0. | |
): | |
super().__init__() | |
self.scaled_cosine = scaled_cosine | |
self.scale_heads = scale_heads | |
assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim ** -0.5 | |
self.logit_scale_max = logit_scale_max | |
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original | |
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) | |
if qkv_bias: | |
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) | |
else: | |
self.in_proj_bias = None | |
if self.scaled_cosine: | |
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) | |
else: | |
self.logit_scale = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
if self.scale_heads: | |
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) | |
else: | |
self.head_scale = None | |
self.out_proj = nn.Linear(dim, dim) | |
self.out_drop = nn.Dropout(proj_drop) | |
def forward(self, x, attn_mask: Optional[torch.Tensor] = None): | |
L, N, C = x.shape | |
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) | |
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) | |
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) | |
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) | |
if self.logit_scale is not None: | |
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) | |
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() | |
attn = attn.view(N, self.num_heads, L, L) * logit_scale | |
attn = attn.view(-1, L, L) | |
else: | |
q = q * self.scale | |
attn = torch.bmm(q, k.transpose(-1, -2)) | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) | |
new_attn_mask.masked_fill_(attn_mask, float("-inf")) | |
attn_mask = new_attn_mask | |
attn += attn_mask | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = torch.bmm(attn, v) | |
if self.head_scale is not None: | |
x = x.view(N, self.num_heads, L, C) * self.head_scale | |
x = x.view(-1, L, C) | |
x = x.transpose(0, 1).reshape(L, N, C) | |
x = self.out_proj(x) | |
x = self.out_drop(x) | |
return x | |
class ResidualAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
n_head: int, | |
mlp_ratio: float = 4.0, | |
act_layer: Callable = nn.GELU, | |
scale_cosine_attn: bool = False, | |
scale_heads: bool = False, | |
scale_attn: bool = False, | |
scale_fc: bool = False, | |
): | |
super().__init__() | |
self.ln_1 = LayerNorm(d_model) | |
# FIXME torchscript issues need to be resolved for custom attention | |
# if scale_cosine_attn or scale_heads: | |
# self.attn = Attention( | |
# d_model, n_head, | |
# scaled_cosine=scale_cosine_attn, | |
# scale_heads=scale_heads, | |
# ) | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_attn = LayerNorm(d_model) if scale_attn else nn.Identity() | |
self.ln_2 = LayerNorm(d_model) | |
mlp_width = int(d_model * mlp_ratio) | |
self.mlp = nn.Sequential(OrderedDict([ | |
("c_fc", nn.Linear(d_model, mlp_width)), | |
('ln', LayerNorm(mlp_width) if scale_fc else nn.Identity()), | |
("gelu", act_layer()), | |
("c_proj", nn.Linear(mlp_width, d_model)) | |
])) | |
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] | |
# FIXME torchscript issues need resolving for custom attention option to work | |
# if self.use_torch_attn: | |
# return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] | |
# else: | |
# return self.attn(x, attn_mask=attn_mask) | |
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
x = x + self.ln_attn(self.attention(self.ln_1(x), attn_mask=attn_mask)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class Transformer(nn.Module): | |
def __init__(self, width: int, layers: int, heads: int, mlp_ratio: float = 4.0, act_layer: Callable = nn.GELU): | |
super().__init__() | |
self.width = width | |
self.layers = layers | |
self.grad_checkpointing = False | |
self.resblocks = nn.ModuleList([ | |
ResidualAttentionBlock(width, heads, mlp_ratio, act_layer=act_layer) | |
for _ in range(layers) | |
]) | |
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
for r in self.resblocks: | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint(r, x, attn_mask) | |
else: | |
x = r(x, attn_mask=attn_mask) | |
return x | |
class VisualTransformer(nn.Module): | |
def __init__( | |
self, | |
image_size: int, | |
patch_size: int, | |
width: int, | |
layers: int, | |
heads: int, | |
mlp_ratio: float, | |
output_dim: int, | |
act_layer: Callable = nn.GELU | |
): | |
super().__init__() | |
self.image_size = to_2tuple(image_size) | |
self.patch_size = to_2tuple(patch_size) | |
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1]) | |
self.output_dim = output_dim | |
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) | |
scale = width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) | |
self.ln_pre = LayerNorm(width) | |
self.transformer = Transformer(width, layers, heads, mlp_ratio, act_layer=act_layer) | |
self.ln_post = LayerNorm(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
assert unlocked_groups == 0, 'partial locking not currently supported for this model' | |
for param in self.parameters(): | |
param.requires_grad = False | |
def set_grad_checkpointing(self, enable=True): | |
self.transformer.grad_checkpointing = enable | |
def forward(self, x: torch.Tensor): | |
with torch.no_grad(): | |
x = self.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat( | |
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), | |
x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.positional_embedding.to(x.dtype) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_post(x[:, 0, :]) | |
if self.proj is not None: | |
x = x @ self.proj | |
return x | |
class CLIPVisionCfg: | |
layers: Union[Tuple[int, int, int, int], int] = 12 | |
width: int = 768 | |
head_width: int = 64 | |
mlp_ratio: float = 4.0 | |
patch_size: int = 16 | |
image_size: Union[Tuple[int, int], int] = 224 | |
timm_model_name: str = None # a valid model name overrides layers, width, patch_size | |
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model | |
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') | |
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '') | |
class CLIPTextCfg: | |
context_length: int = 77 | |
vocab_size: int = 49408 | |
width: int = 512 | |
heads: int = 8 | |
layers: int = 12 | |
class CLIP(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int, | |
vision_cfg: CLIPVisionCfg, | |
text_cfg: CLIPTextCfg, | |
quick_gelu: bool = False, | |
): | |
super().__init__() | |
if isinstance(vision_cfg, dict): | |
vision_cfg = CLIPVisionCfg(**vision_cfg) | |
if isinstance(text_cfg, dict): | |
text_cfg = CLIPTextCfg(**text_cfg) | |
self.context_length = text_cfg.context_length | |
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more | |
# memory efficient in recent PyTorch releases (>= 1.10). | |
# NOTE: timm models always use native GELU regardless of quick_gelu flag. | |
act_layer = QuickGELU if quick_gelu else nn.GELU | |
if vision_cfg.timm_model_name: | |
self.visual = TimmModel( | |
vision_cfg.timm_model_name, | |
pretrained=vision_cfg.timm_model_pretrained, | |
pool=vision_cfg.timm_pool, | |
proj=vision_cfg.timm_proj, | |
embed_dim=embed_dim, | |
image_size=vision_cfg.image_size | |
) | |
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models | |
elif isinstance(vision_cfg.layers, (tuple, list)): | |
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width | |
self.visual = ModifiedResNet( | |
layers=vision_cfg.layers, | |
output_dim=embed_dim, | |
heads=vision_heads, | |
image_size=vision_cfg.image_size, | |
width=vision_cfg.width | |
) | |
else: | |
vision_heads = vision_cfg.width // vision_cfg.head_width | |
self.visual = VisualTransformer( | |
image_size=vision_cfg.image_size, | |
patch_size=vision_cfg.patch_size, | |
width=vision_cfg.width, | |
layers=vision_cfg.layers, | |
heads=vision_heads, | |
mlp_ratio=vision_cfg.mlp_ratio, | |
output_dim=embed_dim, | |
act_layer=act_layer, | |
) | |
self.transformer = Transformer( | |
width=text_cfg.width, | |
layers=text_cfg.layers, | |
heads=text_cfg.heads, | |
act_layer=act_layer, | |
) | |
self.vocab_size = text_cfg.vocab_size | |
self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width) | |
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, text_cfg.width)) | |
self.ln_final = LayerNorm(text_cfg.width) | |
self.text_projection = nn.Parameter(torch.empty(text_cfg.width, embed_dim)) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) | |
self.init_parameters() | |
def init_parameters(self): | |
nn.init.normal_(self.token_embedding.weight, std=0.02) | |
nn.init.normal_(self.positional_embedding, std=0.01) | |
nn.init.constant_(self.logit_scale, np.log(1 / 0.07)) | |
if hasattr(self.visual, 'init_parameters'): | |
self.visual.init_parameters() | |
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) | |
attn_std = self.transformer.width ** -0.5 | |
fc_std = (2 * self.transformer.width) ** -0.5 | |
for block in self.transformer.resblocks: | |
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) | |
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) | |
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) | |
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | |
if self.text_projection is not None: | |
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) | |
def build_attention_mask(self): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.empty(self.context_length, self.context_length) | |
mask.fill_(float("-inf")) | |
mask.triu_(1) # zero out the lower diagonal | |
return mask | |
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): | |
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991 | |
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) | |
def set_grad_checkpointing(self, enable=True): | |
self.visual.set_grad_checkpointing(enable) | |
self.transformer.grad_checkpointing = enable | |
def encode_image(self, image): | |
return self.visual(image) | |
def encode_text(self, text, local=False): | |
with torch.no_grad(): | |
x = self.token_embedding(text) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x, attn_mask=self.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x) | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
if local: | |
x = x @ self.text_projection | |
else: | |
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
return x | |
def forward(self, image, text): | |
if image is None: | |
return self.encode_text(text) | |
elif text is None: | |
return self.encode_image(image) | |
image_features = self.encode_image(image) | |
text_features = self.encode_text(text) | |
return {'image_embed': image_features, | |
'text_embed': text_features, | |
'logit_scale': self.logit_scale.exp()} | |
def convert_weights_to_fp16(model: nn.Module): | |
"""Convert applicable model parameters to fp16""" | |
def _convert_weights_to_fp16(l): | |
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |
l.weight.data = l.weight.data.half() | |
if l.bias is not None: | |
l.bias.data = l.bias.data.half() | |
if isinstance(l, (nn.MultiheadAttention, Attention)): | |
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: | |
tensor = getattr(l, attr) | |
if tensor is not None: | |
tensor.data = tensor.data.half() | |
for name in ["text_projection", "proj"]: | |
if hasattr(l, name): | |
attr = getattr(l, name) | |
if attr is not None: | |
attr.data = attr.data.half() | |
model.apply(_convert_weights_to_fp16) | |
def build_model_from_openai_state_dict(state_dict: dict): | |
vit = "visual.proj" in state_dict | |
if vit: | |
vision_width = state_dict["visual.conv1.weight"].shape[0] | |
vision_layers = len( | |
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) | |
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) | |
image_size = vision_patch_size * grid_size | |
else: | |
counts: list = [ | |
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] | |
vision_layers = tuple(counts) | |
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) | |
vision_patch_size = None | |
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] | |
image_size = output_width * 32 | |
embed_dim = state_dict["text_projection"].shape[1] | |
context_length = state_dict["positional_embedding"].shape[0] | |
vocab_size = state_dict["token_embedding.weight"].shape[0] | |
transformer_width = state_dict["ln_final.weight"].shape[0] | |
transformer_heads = transformer_width // 64 | |
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) | |
vision_cfg = CLIPVisionCfg( | |
layers=vision_layers, | |
width=vision_width, | |
patch_size=vision_patch_size, | |
image_size=image_size, | |
) | |
text_cfg = CLIPTextCfg( | |
context_length=context_length, | |
vocab_size=vocab_size, | |
width=transformer_width, | |
heads=transformer_heads, | |
layers=transformer_layers | |
) | |
model = CLIP( | |
embed_dim, | |
vision_cfg=vision_cfg, | |
text_cfg=text_cfg, | |
quick_gelu=True, # OpenAI models were trained with QuickGELU | |
) | |
for key in ["input_resolution", "context_length", "vocab_size"]: | |
state_dict.pop(key, None) | |
convert_weights_to_fp16(model) | |
model.load_state_dict(state_dict) | |
return model.eval() | |
def trace_model(model, batch_size=256, device=torch.device('cpu')): | |
model.eval() | |
image_size = model.visual.image_size | |
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) | |
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) | |
model = torch.jit.trace_module( | |
model, | |
inputs=dict( | |
forward=(example_images, example_text), | |
encode_text=(example_text,), | |
encode_image=(example_images,) | |
)) | |
model.visual.image_size = image_size | |
return model | |
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): | |
# Rescale the grid of position embeddings when loading from state_dict | |
old_pos_embed = state_dict.get('visual.positional_embedding', None) | |
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): | |
return | |
grid_size = to_2tuple(model.visual.grid_size) | |
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) | |
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens | |
if new_seq_len == old_pos_embed.shape[0]: | |
return | |
if extra_tokens: | |
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] | |
else: | |
pos_emb_tok, pos_emb_img = None, old_pos_embed | |
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) | |
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) | |
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) | |
pos_emb_img = F.interpolate( | |
pos_emb_img, | |
size=grid_size, | |
mode=interpolation, | |
align_corners=True, | |
) | |
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] | |
if pos_emb_tok is not None: | |
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) | |
else: | |
new_pos_embed = pos_emb_img | |
state_dict['visual.positional_embedding'] = new_pos_embed | |