Spaces:
Running
Running
import sys | |
sys.path.append("./pacscore") | |
import argparse | |
import torch | |
import pacscore.evaluation as evaluation | |
import scipy.stats | |
from pacscore.models.clip import clip | |
from pacscore.utils import collate_fn | |
from pacscore.evaluation import PACScore, RefPACScore | |
from pacscore.models import open_clip | |
from data import Flickr8k | |
from torch.utils.data import DataLoader | |
from polos.metrics.regression_metrics import RegressionReport | |
from polos.models import load_checkpoint | |
import argparse | |
from polos.models import load_checkpoint | |
from PIL import Image | |
from utils import * | |
def collect_coef(memory, dataset_name, method, coef_tensor): | |
memory.setdefault(dataset_name, {}) | |
coef = {k : round(float(v.numpy() if not isinstance(v,float) else v),4) for k, v in coef_tensor.items()} | |
memory[dataset_name].update({method : coef}) | |
gprint(f"[{dataset_name}]",method,coef) | |
def compute_correlation_scores(memory, dataloader, pacscore, polos, preprocess, args): | |
gen = {} | |
gts = {} | |
human_scores = list() | |
ims_cs = list() | |
gen_cs = list() | |
gts_cs = list() | |
all_scores = dict() | |
pacscore.eval() | |
polos.eval() | |
for it, (images, candidates, references, scores) in enumerate(iter(dataloader)): | |
for i, (im_i, gts_i, gen_i, score_i) in enumerate(zip(images, references, candidates, scores)): | |
gen['%d_%d' % (it, i)] = [gen_i, ] | |
gts['%d_%d' % (it, i)] = gts_i | |
ims_cs.append(im_i) | |
gen_cs.append(gen_i) | |
gts_cs.append(gts_i) | |
human_scores.append(score_i) | |
gts = evaluation.PTBTokenizer.tokenize(gts) | |
gen = evaluation.PTBTokenizer.tokenize(gen) | |
all_scores_metrics = evaluation.get_all_metrics(gts, gen, return_per_cap=True) | |
for k, v in all_scores_metrics.items(): | |
if k == 'BLEU': | |
all_scores['BLEU-1'] = v[0] | |
all_scores['BLEU-4'] = v[-1] | |
else: | |
all_scores[k] = v | |
# PAC-S | |
_, pac_scores, candidate_feats, len_candidates = PACScore(pacscore, preprocess, ims_cs, gen_cs, args.device, w=2.0) | |
all_scores['PAC-S'] = pac_scores | |
# RefPAC-S | |
_, per_instance_text_text = RefPACScore(pacscore, gts_cs, candidate_feats, args.device, torch.tensor(len_candidates)) | |
refpac_scores = 2 * pac_scores * per_instance_text_text / (pac_scores + per_instance_text_text) | |
all_scores['RefPAC-S'] = refpac_scores | |
# Polos | |
data = [{ | |
"mt" : gen, | |
"refs": refs, | |
"img": Image.open(image).convert("RGB") | |
} for image, refs, gen in zip(ims_cs, gts_cs, gen_cs) | |
] | |
_, sys_score = polos.predict(data,cuda=True,batch_size=32) | |
all_scores['Polos'] = sys_score | |
del data | |
for k, v in all_scores.items(): | |
kendalltau_b = 100 * scipy.stats.kendalltau(v, human_scores, variant='b')[0] | |
kendalltau_c = 100 * scipy.stats.kendalltau(v, human_scores, variant='c')[0] | |
print('%s \t Kendall Tau-b: %.3f \t Kendall Tau-c: %.3f' | |
% (k, kendalltau_b, kendalltau_c)) | |
collect_coef(memory, | |
args.dataset_name, | |
k, | |
{"Kendall" : kendalltau_c if args.kendall_type == "c" else kendalltau_b} | |
) | |
return memory | |
def compute_scores(memory, pacscore, polos, preprocess, args): | |
args.datasets = ['flickr8k_expert', 'flickr8k_cf'] | |
args.batch_size_compute_score = 10 | |
for d in args.datasets: | |
print("Computing correlation scores on dataset: " + d) | |
if d == 'flickr8k_expert': | |
dataset = Flickr8k(root='data_en/flickr8k/',json_file='flickr8k.json') | |
dataloader = DataLoader(dataset, batch_size=args.batch_size_compute_score, shuffle=False, collate_fn=collate_fn) | |
args.kendall_type = "c" | |
elif d == 'flickr8k_cf': | |
dataset = Flickr8k(root='data_en/flickr8k/',json_file='crowdflower_flickr8k.json') | |
dataloader = DataLoader(dataset, batch_size=args.batch_size_compute_score, shuffle=False, collate_fn=collate_fn) | |
args.kendall_type = "b" | |
args.dataset_name = d | |
memory = compute_correlation_scores(memory, dataloader, pacscore, polos, preprocess, args) | |
return memory | |
def compute_flickr(args,checkpoint,memory,tops): | |
# Polos | |
polos = load_checkpoint(checkpoint) | |
# PAC-S | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pacscore, preprocess = clip.load("ViT-B/32", device=device) | |
pacscore = pacscore.to(device) | |
pacscore = pacscore.float() | |
checkpoint = torch.load("pacscore/checkpoints/clip_ViT-B-32.pth") # Use checkpoints trained with PACScore | |
pacscore.load_state_dict(checkpoint['state_dict']) | |
pacscore.eval() | |
args.device = device | |
memory = compute_scores(memory, pacscore, polos, preprocess, args) | |
return memory, tops |