Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -28,23 +28,50 @@ pipe = pipeline(
|
|
28 |
)
|
29 |
|
30 |
|
31 |
-
def
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
output = translator(text, max_length=400)
|
46 |
-
return output[0]['translation_text']
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
def transcribe(inputs, task):
|
@@ -52,7 +79,7 @@ def transcribe(inputs, task):
|
|
52 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
53 |
|
54 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
55 |
-
translated_text = translation(
|
56 |
return text, translated_text
|
57 |
|
58 |
|
@@ -109,16 +136,16 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
109 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
110 |
|
111 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
112 |
-
translated_text = translation(
|
113 |
|
114 |
return html_embed_str, text, translated_text
|
115 |
|
116 |
|
117 |
-
lang_codes = list(flores_codes.keys())
|
118 |
-
|
119 |
|
120 |
demo = gr.Blocks()
|
121 |
|
|
|
|
|
122 |
mf_transcribe = gr.Interface(
|
123 |
fn=transcribe,
|
124 |
inputs=[
|
|
|
28 |
)
|
29 |
|
30 |
|
31 |
+
def load_models():
|
32 |
+
# build model and tokenizer
|
33 |
+
model_name_dict = {
|
34 |
+
'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
35 |
+
#'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
36 |
+
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
|
37 |
+
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
38 |
+
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
|
39 |
+
# 'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
40 |
+
}
|
41 |
+
|
42 |
+
model_dict = {}
|
43 |
+
|
44 |
+
for call_name, real_name in model_name_dict.items():
|
45 |
+
print('\tLoading model: %s' % call_name)
|
46 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(real_name)
|
48 |
+
model_dict[call_name+'_model'] = model
|
49 |
+
model_dict[call_name+'_tokenizer'] = tokenizer
|
50 |
+
|
51 |
+
return model_dict
|
52 |
+
|
53 |
+
def translation(source, target, text):
|
54 |
+
if len(model_dict) == 2:
|
55 |
+
model_name = 'nllb-distilled-1.3B'
|
56 |
+
|
57 |
+
start_time = time.time()
|
58 |
+
source = flores_codes[source]
|
59 |
+
target = flores_codes[target]
|
60 |
+
|
61 |
+
model = model_dict[model_name + '_model']
|
62 |
+
tokenizer = model_dict[model_name + '_tokenizer']
|
63 |
+
|
64 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
|
65 |
output = translator(text, max_length=400)
|
|
|
66 |
|
67 |
+
end_time = time.time()
|
68 |
+
|
69 |
+
output = output[0]['translation_text']
|
70 |
+
result = {'inference_time': end_time - start_time,
|
71 |
+
'source': source,
|
72 |
+
'target': target,
|
73 |
+
'result': output}
|
74 |
+
return result
|
75 |
|
76 |
|
77 |
def transcribe(inputs, task):
|
|
|
79 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
80 |
|
81 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
82 |
+
translated_text = translation(source, target, text)["result"]
|
83 |
return text, translated_text
|
84 |
|
85 |
|
|
|
136 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
137 |
|
138 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
139 |
+
translated_text = translation(source, target, text)["result"]
|
140 |
|
141 |
return html_embed_str, text, translated_text
|
142 |
|
143 |
|
|
|
|
|
144 |
|
145 |
demo = gr.Blocks()
|
146 |
|
147 |
+
lang_codes = list(flores_codes.keys())
|
148 |
+
|
149 |
mf_transcribe = gr.Interface(
|
150 |
fn=transcribe,
|
151 |
inputs=[
|