|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
import os |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
|
|
from constants import * |
|
|
|
global data_component, filter_component |
|
|
|
def get_baseline_df(): |
|
df = pd.read_csv(CSV_DIR) |
|
df['Average'] = ((df['Streaming_OS'] + df['Dialogue_OS']) / 2).round(2) |
|
df = df.sort_values(by="Average", ascending=False) |
|
present_columns = ['Model'] + checkbox_group.value |
|
df = df[present_columns] |
|
return df |
|
|
|
def get_all_df(): |
|
df = pd.read_csv(CSV_DIR) |
|
df['Average'] = ((df['Streaming_OS'] + df['Dialogue_OS']) / 2).round(2) |
|
df = df.sort_values(by="Average", ascending=False) |
|
return df |
|
|
|
def on_filter_model_size_method_change(selected_columns): |
|
updated_data = get_all_df() |
|
|
|
|
|
selected_columns = [item for item in TASK_INFO if item in selected_columns] |
|
present_columns = ['Model'] + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
return filter_component |
|
|
|
def search_model(query): |
|
df = get_all_df() |
|
filtered_df = df[df['Model'].str.contains(query, case=False)] |
|
return filtered_df |
|
|
|
block = gr.Blocks() |
|
|
|
with block: |
|
gr.Markdown( |
|
LEADERBORAD_INTRODUCTION |
|
) |
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π SVBench", elem_id="svbench-tab-table", id=1): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
lines=10, |
|
) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
|
|
|
|
checkbox_group = gr.CheckboxGroup( |
|
choices=TASK_INFO, |
|
value=AVG_INFO, |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
|
|
search_box = gr.Textbox( |
|
label="Search Model", |
|
placeholder="Enter model name", |
|
interactive=True, |
|
) |
|
|
|
data_component = gr.components.Dataframe( |
|
value=get_baseline_df, |
|
headers=['Model', 'Type', 'Size'] + AVG_INFO, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) |
|
search_box.change(fn=search_model, inputs=[search_box], outputs=data_component) |
|
|
|
|
|
with gr.TabItem("π About", elem_id="svbench-tab-table", id=2): |
|
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("π Submit here! ", elem_id="-tab-table", id=3): |
|
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
|
|
|
|
def refresh_data(): |
|
value1 = get_baseline_df() |
|
return value1 |
|
|
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
with gr.Row(): |
|
result_download = gr.Button("Download Leaderboard") |
|
file_download = gr.File(label="download the csv of leaderboard.", visible=False) |
|
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) |
|
result_download.click(lambda: (CSV_DIR, gr.update(visible=True)), inputs=None, outputs=[file_download, file_download]) |
|
|
|
block.launch() |