zac's picture
Update app.py
34a8b43
raw
history blame
1.77 kB
import gradio as gr
import time
import ctypes #to run on C api directly
import llama_cpp
from llama_cpp import Llama
from huggingface_hub import hf_hub_download #load from huggingfaces
llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/StableBeluga-7B-GGML", filename="stablebeluga-7b.ggmlv3.q6_K.bin"))
def generate_text(input_text):
output = llm(f"Q: {input_text} A:", max_tokens=521, stop=["Q:", "\n"], echo=True)
return output['choices'][0]['text']
input_text = gr.inputs.Textbox(lines= 10, label="Enter your input text")
output_text = gr.outputs.Textbox(label="Output text")
description = "bro neil it currently dosent work two people sending it request at the same time so going to fix that but currently running ggml models with llama.cpp implementation in python [https://github.com/abetlen/llama-cpp-python]"
examples = [
["What is the capital of France? ", "The capital of France is Paris."],
["Who wrote the novel 'Pride and Prejudice'?", "The novel 'Pride and Prejudice' was written by Jane Austen."],
["What is the square root of 64?", "The square root of 64 is 8."]
]
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
bot_message = output_text
history[-1][1] = ""
for character in bot_message:
history[-1][1] += character
time.sleep(0.05)
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
if __name__ == "__main__":
demo.launch()