Spaces:
Sleeping
Sleeping
File size: 3,600 Bytes
9f8186b 7716f22 9f8186b c9f8cf6 ae4a9b6 9f8186b 97ceac7 7716f22 9f8186b 7716f22 9f8186b 7716f22 9f8186b 72cf55b 9f8186b 72cf55b 7716f22 9f8186b 72cf55b 9f8186b 72cf55b 9f8186b 72cf55b 9f8186b 72cf55b 9bd6b44 72cf55b 7716f22 9ed9a4e 82407c0 9bd6b44 82407c0 7716f22 9ed9a4e 7716f22 82407c0 9bd6b44 82407c0 72cf55b 9f8186b 7716f22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
from flask import Flask, request, jsonify
from langchain_community.llms import LlamaCpp
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel
# cosine_similarity
import torch
from torch.nn.functional import cosine_similarity
import os
app = Flask(__name__)
n_gpu_layers = 0
n_batch = 1024
llm = LlamaCpp(
model_path="Phi-3-mini-4k-instruct-q4.gguf", # path to GGUF file
temperature=0.1,
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
verbose=True,
n_ctx=4096
)
model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2')
model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2')
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf')
print("model size ====> :", file_size.st_size, "bytes")
@app.route('/cv', methods=['POST'])
def get_skills():
cv_body = request.json.get('cv_body')
# Simple inference example
output = llm.invoke(
f"\n{cv_body}\nCan you list the skills mentioned in the CV?",
max_tokens=256, # Generate up to 256 tokens
stop=[""],
echo=True, # Whether to echo the prompt
)
return jsonify({'skills': output})
@app.get('/')
def health():
return jsonify({'status': 'Worked'})
# Endpoint to compare between employee skills and job skills
@app.route('/compare', methods=['POST'])
def compare():
employee_skills = request.json.get('employee_skills')
jobs_skills = request.json.get('jobs_skills')
if not isinstance(employee_skills, list) or not all(isinstance(skill, str) for skill in employee_skills):
raise ValueError("employee_skills must be a list of strings")
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
raise ValueError("jobs_skills must be a list of strings")
job_embeddings = model.encode(jobs_skills)
employee_embeddings = model.encode(employee_skills)
similarity_scores = []
employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0)
for i, job_e in enumerate(job_embeddings):
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.tolist()[0]})
return jsonify(similarity_scores)
# Endpoint to compare job posts with employee skills
@app.route('/compare_jop', methods=['POST'])
def compare_jop():
employee_skills = request.json.get('employee_skills')
jobs_skills = request.json.get('jobs_skills')
if not isinstance(employee_skills, list) or not all(isinstance(skill, str) for skill in employee_skills):
raise ValueError("employee_skills must be a list of strings")
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
raise ValueError("jobs_skills must be a list of strings")
job_embeddings = model.encode(jobs_skills)
employee_embeddings = model.encode(employee_skills)
similarity_scores = []
employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0)
for i, job_e in enumerate(job_embeddings):
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.tolist()[0]})
return jsonify(similarity_scores)
if __name__ == '__main__':
app.run()
|