Files changed (1) hide show
  1. app.py +126 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
4
+ from qwen_vl_utils import process_vision_info
5
+ import torch
6
+ from PIL import Image
7
+ import subprocess
8
+ from datetime import datetime
9
+ import numpy as np
10
+ import os
11
+
12
+
13
+ # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
14
+
15
+ # models = {
16
+ # "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
17
+
18
+ # }
19
+ def array_to_image_path(image_array):
20
+ if image_array is None:
21
+ raise ValueError("No image provided. Please upload an image before submitting.")
22
+ # Convert numpy array to PIL Image
23
+ img = Image.fromarray(np.uint8(image_array))
24
+
25
+ # Generate a unique filename using timestamp
26
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
27
+ filename = f"image_{timestamp}.png"
28
+
29
+ # Save the image
30
+ img.save(filename)
31
+
32
+ # Get the full path of the saved image
33
+ full_path = os.path.abspath(filename)
34
+
35
+ return full_path
36
+
37
+ models = {
38
+ "Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
39
+
40
+ }
41
+
42
+ processors = {
43
+ "Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)
44
+ }
45
+
46
+ DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)"
47
+
48
+ kwargs = {}
49
+ kwargs['torch_dtype'] = torch.bfloat16
50
+
51
+ user_prompt = '<|user|>\n'
52
+ assistant_prompt = '<|assistant|>\n'
53
+ prompt_suffix = "<|end|>\n"
54
+
55
+ @spaces.GPU
56
+ def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-7B-Instruct"):
57
+ image_path = array_to_image_path(image)
58
+
59
+ print(image_path)
60
+ model = models[model_id]
61
+ processor = processors[model_id]
62
+
63
+ prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
64
+ image = Image.fromarray(image).convert("RGB")
65
+ messages = [
66
+ {
67
+ "role": "user",
68
+ "content": [
69
+ {
70
+ "type": "image",
71
+ "image": image_path,
72
+ },
73
+ {"type": "text", "text": text_input},
74
+ ],
75
+ }
76
+ ]
77
+
78
+ # Preparation for inference
79
+ text = processor.apply_chat_template(
80
+ messages, tokenize=False, add_generation_prompt=True
81
+ )
82
+ image_inputs, video_inputs = process_vision_info(messages)
83
+ inputs = processor(
84
+ text=[text],
85
+ images=image_inputs,
86
+ videos=video_inputs,
87
+ padding=True,
88
+ return_tensors="pt",
89
+ )
90
+ inputs = inputs.to("cuda")
91
+
92
+ # Inference: Generation of the output
93
+ generated_ids = model.generate(**inputs, max_new_tokens=1024)
94
+ generated_ids_trimmed = [
95
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
96
+ ]
97
+ output_text = processor.batch_decode(
98
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
99
+ )
100
+
101
+ return output_text[0]
102
+
103
+ css = """
104
+ #output {
105
+ height: 500px;
106
+ overflow: auto;
107
+ border: 1px solid #ccc;
108
+ }
109
+ """
110
+
111
+ with gr.Blocks(css=css) as demo:
112
+ gr.Markdown(DESCRIPTION)
113
+ with gr.Tab(label="Qwen2-VL-7B Input"):
114
+ with gr.Row():
115
+ with gr.Column():
116
+ input_img = gr.Image(label="Input Picture")
117
+ model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct")
118
+ text_input = gr.Textbox(label="Question")
119
+ submit_btn = gr.Button(value="Submit")
120
+ with gr.Column():
121
+ output_text = gr.Textbox(label="Output Text")
122
+
123
+ submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
124
+
125
+ demo.queue(api_open=False)
126
+ demo.launch(debug=True)