Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
client = InferenceClient("thviet79/model-QA-medical") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Here, call the Hugging Face Inference API with the messages and other parameters | |
response = client.text_generation( | |
model="thviet79/model-QA-medical", | |
inputs=messages, | |
parameters={"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p}, | |
) | |
return response["generated_text"] # Extract the model's response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
type='messages' # This makes it use the OpenAI-style structure | |
) | |
if __name__ == "__main__": | |
demo.launch(share = True) |