demo_medical_QA / app.py
zerostratos's picture
Update app.py
a0ceaf4 verified
raw
history blame
1.56 kB
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("thviet79/model-QA-medical")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Here, call the Hugging Face Inference API with the messages and other parameters
response = client.text_generation(
model="thviet79/model-QA-medical",
inputs=messages,
parameters={"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p},
)
return response["generated_text"] # Extract the model's response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
type='messages' # This makes it use the OpenAI-style structure
)
if __name__ == "__main__":
demo.launch(share = True)