Spaces:
Runtime error
Runtime error
File size: 36,819 Bytes
49ce4b9 c620e0b 49ce4b9 c620e0b fdddf65 c620e0b 5fcf47b c620e0b fdddf65 a5e11b9 79d936d 3daa16f a5e11b9 fdddf65 c620e0b 49ce4b9 c620e0b 49ce4b9 c620e0b 5fcf47b c620e0b 5fcf47b c620e0b 5fcf47b 40a8f4e 5fcf47b a5e11b9 5fcf47b a5e11b9 5fcf47b d2eef14 5fcf47b 8cb0300 bcc3066 0a36bb6 5fcf47b e652ee3 b39fdac 8cb0300 5fcf47b 40a8f4e 5fcf47b d2eef14 5fcf47b a5e11b9 5fcf47b 38fb491 5fcf47b 0a36bb6 8cb0300 0a36bb6 bcc3066 0a36bb6 5fcf47b e652ee3 5fcf47b 38fb491 5fcf47b d2eef14 5fcf47b 8cb0300 bcc3066 0a36bb6 5fcf47b e652ee3 b39fdac 8cb0300 5fcf47b b39fdac 8cb0300 b39fdac 8cb0300 a5e11b9 300b660 a5e11b9 c620e0b 320751d c620e0b a5e11b9 c620e0b 320751d a5e11b9 320751d c620e0b e553d36 c620e0b 320751d a5e11b9 320751d c620e0b e553d36 c620e0b 600770f 49ce4b9 27aa501 9279c83 49ce4b9 9279c83 49ce4b9 80c2789 49ce4b9 d50497e 49ce4b9 e652ee3 8cb0300 e652ee3 600770f 69fa725 5fcf47b 92a8f77 5fcf47b 3889cb7 5fcf47b 49ce4b9 e9c5abc 49ce4b9 e9c5abc 49ce4b9 e9c5abc 49ce4b9 8cb0300 a5e11b9 8cb0300 0a36bb6 a5e11b9 0a36bb6 e652ee3 890373d e652ee3 a5e11b9 e652ee3 890373d e652ee3 890373d e652ee3 0a36bb6 27aa501 0a36bb6 49ce4b9 116804a b39fdac 36b4c98 49ce4b9 8cb0300 49ce4b9 8cb0300 49ce4b9 5fcf47b 8cb0300 bcc3066 0a36bb6 5fcf47b e652ee3 5fcf47b a5e11b9 5fcf47b 79d936d 3daa16f 4623b35 49ce4b9 3daa16f 79d936d 49ce4b9 5fcf47b 27aa501 5fcf47b 49ce4b9 3daa16f 49ce4b9 9ee06c7 79d936d 320751d 79d936d f090da6 79d936d 3daa16f fdddf65 79d936d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
import os
import json
from datetime import datetime
import gradio as gr
from random_word import RandomWords
from ...config import Config
from ...globals import Global
from ...utils.data import (
get_available_template_names,
get_available_dataset_names,
get_available_lora_model_names
)
from ...utils.relative_read_file import relative_read_file
from ..css_styles import register_css_style
from .values import (
default_dataset_plain_text_input_variables_separator,
default_dataset_plain_text_input_and_output_separator,
default_dataset_plain_text_data_separator,
sample_plain_text_value,
sample_jsonl_text_value,
sample_json_text_value,
)
from .previewing import (
refresh_preview,
refresh_dataset_items_count,
)
from .training import (
do_train,
render_training_status,
render_loss_plot
)
register_css_style('finetune', relative_read_file(__file__, "style.css"))
def random_hyphenated_word():
r = RandomWords()
word1 = r.get_random_word()
word2 = r.get_random_word()
return word1 + '-' + word2
def random_name():
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y-%m-%d-%H-%M-%S")
return f"{random_hyphenated_word()}-{formatted_datetime}"
def reload_selections(current_template, current_dataset):
available_template_names = get_available_template_names()
available_template_names_with_none = available_template_names + ["None"]
if current_template not in available_template_names_with_none:
current_template = None
current_template = current_template or next(
iter(available_template_names_with_none), None)
available_dataset_names = get_available_dataset_names()
if current_dataset not in available_dataset_names:
current_dataset = None
current_dataset = current_dataset or next(
iter(available_dataset_names), None)
available_lora_models = ["-"] + get_available_lora_model_names()
return (
gr.Dropdown.update(
choices=available_template_names_with_none,
value=current_template),
gr.Dropdown.update(
choices=available_dataset_names,
value=current_dataset),
gr.Dropdown.update(choices=available_lora_models)
)
def handle_switch_dataset_source(source):
if source == "Text Input":
return gr.Column.update(visible=True), gr.Column.update(visible=False)
else:
return gr.Column.update(visible=False), gr.Column.update(visible=True)
def handle_switch_dataset_text_format(format):
if format == "Plain Text":
return gr.Column.update(visible=True)
return gr.Column.update(visible=False)
def load_sample_dataset_to_text_input(format):
if format == "JSON":
return gr.Code.update(value=sample_json_text_value)
if format == "JSON Lines":
return gr.Code.update(value=sample_jsonl_text_value)
else: # Plain Text
return gr.Code.update(value=sample_plain_text_value)
def handle_continue_from_model_change(model_name):
try:
lora_models_directory_path = os.path.join(
Config.data_dir, "lora_models")
lora_model_directory_path = os.path.join(
lora_models_directory_path, model_name)
all_files = os.listdir(lora_model_directory_path)
checkpoints = [
file for file in all_files if file.startswith("checkpoint-")]
checkpoints = ["-"] + checkpoints
can_load_params = "finetune_params.json" in all_files or "finetune_args.json" in all_files
return (gr.Dropdown.update(choices=checkpoints, value="-"),
gr.Button.update(visible=can_load_params),
gr.Markdown.update(value="", visible=False))
except Exception:
pass
return (gr.Dropdown.update(choices=["-"], value="-"),
gr.Button.update(visible=False),
gr.Markdown.update(value="", visible=False))
def handle_load_params_from_model(
model_name,
template, load_dataset_from, dataset_from_data_dir,
max_seq_length,
evaluate_data_count,
micro_batch_size,
gradient_accumulation_steps,
epochs,
learning_rate,
train_on_inputs,
lora_r,
lora_alpha,
lora_dropout,
lora_target_modules,
lora_modules_to_save,
load_in_8bit,
fp16,
bf16,
gradient_checkpointing,
save_steps,
save_total_limit,
logging_steps,
additional_training_arguments,
additional_lora_config,
lora_target_module_choices,
lora_modules_to_save_choices,
):
error_message = ""
notice_message = ""
unknown_keys = []
try:
lora_models_directory_path = os.path.join(
Config.data_dir, "lora_models")
lora_model_directory_path = os.path.join(
lora_models_directory_path, model_name)
try:
with open(os.path.join(lora_model_directory_path, "info.json"), "r") as f:
info = json.load(f)
if isinstance(info, dict):
model_prompt_template = info.get("prompt_template")
if model_prompt_template:
template = model_prompt_template
model_dataset_name = info.get("dataset_name")
if model_dataset_name and isinstance(model_dataset_name, str) and not model_dataset_name.startswith("N/A"):
load_dataset_from = "Data Dir"
dataset_from_data_dir = model_dataset_name
except FileNotFoundError:
pass
data = {}
possible_files = ["finetune_params.json", "finetune_args.json"]
for file in possible_files:
try:
with open(os.path.join(lora_model_directory_path, file), "r") as f:
data = json.load(f)
except FileNotFoundError:
pass
for key, value in data.items():
if key == "max_seq_length":
max_seq_length = value
if key == "cutoff_len":
max_seq_length = value
elif key == "evaluate_data_count":
evaluate_data_count = value
elif key == "val_set_size":
evaluate_data_count = value
elif key == "micro_batch_size":
micro_batch_size = value
elif key == "gradient_accumulation_steps":
gradient_accumulation_steps = value
elif key == "epochs":
epochs = value
elif key == "num_train_epochs":
epochs = value
elif key == "learning_rate":
learning_rate = value
elif key == "train_on_inputs":
train_on_inputs = value
elif key == "lora_r":
lora_r = value
elif key == "lora_alpha":
lora_alpha = value
elif key == "lora_dropout":
lora_dropout = value
elif key == "lora_target_modules":
lora_target_modules = value
if value:
for element in value:
if element not in lora_target_module_choices:
lora_target_module_choices.append(element)
elif key == "lora_modules_to_save":
lora_modules_to_save = value
if value:
for element in value:
if element not in lora_modules_to_save_choices:
lora_modules_to_save_choices.append(element)
elif key == "load_in_8bit":
load_in_8bit = value
elif key == "fp16":
fp16 = value
elif key == "bf16":
bf16 = value
elif key == "gradient_checkpointing":
gradient_checkpointing = value
elif key == "save_steps":
save_steps = value
elif key == "save_total_limit":
save_total_limit = value
elif key == "logging_steps":
logging_steps = value
elif key == "additional_training_arguments":
if value:
additional_training_arguments = json.dumps(value, indent=2)
else:
additional_training_arguments = ""
elif key == "additional_lora_config":
if value:
additional_lora_config = json.dumps(value, indent=2)
else:
additional_lora_config = ""
elif key == "group_by_length":
pass
elif key == "resume_from_checkpoint":
pass
else:
unknown_keys.append(key)
except Exception as e:
error_message = str(e)
if len(unknown_keys) > 0:
notice_message = f"Note: cannot restore unknown arg: {', '.join([f'`{x}`' for x in unknown_keys])}"
message = ". ".join([x for x in [error_message, notice_message] if x])
has_message = False
if message:
message += "."
has_message = True
return (
gr.Markdown.update(value=message, visible=has_message),
template, load_dataset_from, dataset_from_data_dir,
max_seq_length,
evaluate_data_count,
micro_batch_size,
gradient_accumulation_steps,
epochs,
learning_rate,
train_on_inputs,
lora_r,
lora_alpha,
lora_dropout,
gr.CheckboxGroup.update(value=lora_target_modules,
choices=lora_target_module_choices),
gr.CheckboxGroup.update(
value=lora_modules_to_save, choices=lora_modules_to_save_choices),
load_in_8bit,
fp16,
bf16,
gradient_checkpointing,
save_steps,
save_total_limit,
logging_steps,
additional_training_arguments,
additional_lora_config,
lora_target_module_choices,
lora_modules_to_save_choices
)
default_lora_target_module_choices = ["q_proj", "k_proj", "v_proj", "o_proj"]
default_lora_modules_to_save_choices = ["model.embed_tokens", "lm_head"]
def handle_lora_target_modules_add(choices, new_module, selected_modules):
choices.append(new_module)
selected_modules.append(new_module)
return (choices, "", gr.CheckboxGroup.update(value=selected_modules, choices=choices))
def handle_lora_modules_to_save_add(choices, new_module, selected_modules):
choices.append(new_module)
selected_modules.append(new_module)
return (choices, "", gr.CheckboxGroup.update(value=selected_modules, choices=choices))
def do_abort_training():
Global.should_stop_training = True
Global.training_status_text = "Aborting..."
def finetune_ui():
things_that_might_timeout = []
with gr.Blocks() as finetune_ui_blocks:
with gr.Column(elem_id="finetune_ui_content"):
with gr.Tab("Prepare"):
with gr.Box(elem_id="finetune_ui_select_dataset_source"):
with gr.Row():
template = gr.Dropdown(
label="Template",
elem_id="finetune_template",
)
load_dataset_from = gr.Radio(
["Text Input", "Data Dir"],
label="Load Dataset From",
value="Text Input",
elem_id="finetune_load_dataset_from")
reload_selections_button = gr.Button(
"↻",
elem_id="finetune_reload_selections_button"
)
reload_selections_button.style(
full_width=False,
size="sm")
with gr.Column(
elem_id="finetune_dataset_from_data_dir_group",
visible=False
) as dataset_from_data_dir_group:
dataset_from_data_dir = gr.Dropdown(
label="Dataset",
elem_id="finetune_dataset_from_data_dir",
)
dataset_from_data_dir_message = gr.Markdown(
"",
visible=False,
elem_id="finetune_dataset_from_data_dir_message")
with gr.Box(elem_id="finetune_dataset_text_input_group") as dataset_text_input_group:
gr.Textbox(
label="Training Data", elem_classes="textbox_that_is_only_used_to_display_a_label")
dataset_text = gr.Code(
show_label=False,
language="json",
value=sample_plain_text_value,
# max_lines=40,
elem_id="finetune_dataset_text_input_textbox")
dataset_from_text_message = gr.Markdown(
"",
visible=False,
elem_id="finetune_dataset_from_text_message")
gr.Markdown(
"The data you entered here will not be saved. Do not make edits here directly. Instead, edit the data elsewhere then paste it here.")
with gr.Row():
with gr.Column():
dataset_text_format = gr.Radio(
["Plain Text", "JSON Lines", "JSON"],
label="Format", value="Plain Text", elem_id="finetune_dataset_text_format")
dataset_text_load_sample_button = gr.Button(
"Load Sample", elem_id="finetune_dataset_text_load_sample_button")
dataset_text_load_sample_button.style(
full_width=False,
size="sm")
with gr.Column(elem_id="finetune_dataset_plain_text_separators_group") as dataset_plain_text_separators_group:
dataset_plain_text_input_variables_separator = gr.Textbox(
label="Input Variables Separator",
elem_id="dataset_plain_text_input_variables_separator",
placeholder=default_dataset_plain_text_input_variables_separator,
value=default_dataset_plain_text_input_variables_separator)
dataset_plain_text_input_and_output_separator = gr.Textbox(
label="Input and Output Separator",
elem_id="dataset_plain_text_input_and_output_separator",
placeholder=default_dataset_plain_text_input_and_output_separator,
value=default_dataset_plain_text_input_and_output_separator)
dataset_plain_text_data_separator = gr.Textbox(
label="Data Separator",
elem_id="dataset_plain_text_data_separator",
placeholder=default_dataset_plain_text_data_separator,
value=default_dataset_plain_text_data_separator)
things_that_might_timeout.append(
dataset_text_format.change(
fn=handle_switch_dataset_text_format,
inputs=[dataset_text_format],
outputs=[
dataset_plain_text_separators_group # type: ignore
]
))
things_that_might_timeout.append(
dataset_text_load_sample_button.click(fn=load_sample_dataset_to_text_input, inputs=[
dataset_text_format], outputs=[dataset_text]))
gr.Markdown(
"💡 Switch to the \"Preview\" tab to verify that your inputs are correct.")
with gr.Tab("Preview"):
with gr.Row():
finetune_dataset_preview_info_message = gr.Markdown(
"Set the dataset in the \"Prepare\" tab, then preview it here.",
elem_id="finetune_dataset_preview_info_message"
)
finetune_dataset_preview_count = gr.Number(
label="Preview items count",
value=10,
# minimum=1,
# maximum=100,
precision=0,
elem_id="finetune_dataset_preview_count"
)
finetune_dataset_preview = gr.Dataframe(
wrap=True, elem_id="finetune_dataset_preview")
things_that_might_timeout.append(
load_dataset_from.change(
fn=handle_switch_dataset_source,
inputs=[load_dataset_from],
outputs=[
dataset_text_input_group,
dataset_from_data_dir_group
] # type: ignore
))
dataset_inputs = [
template,
load_dataset_from,
dataset_from_data_dir,
dataset_text,
dataset_text_format,
dataset_plain_text_input_variables_separator,
dataset_plain_text_input_and_output_separator,
dataset_plain_text_data_separator,
]
dataset_preview_inputs = dataset_inputs + \
[finetune_dataset_preview_count]
with gr.Row():
max_seq_length = gr.Slider(
minimum=1, maximum=4096, value=512,
label="Max Sequence Length",
info="The maximum length of each sample text sequence. Sequences longer than this will be truncated.",
elem_id="finetune_max_seq_length"
)
train_on_inputs = gr.Checkbox(
label="Train on Inputs",
value=True,
info="If not enabled, inputs will be masked out in loss.",
elem_id="finetune_train_on_inputs"
)
with gr.Row():
# https://huggingface.co/docs/transformers/main/main_classes/trainer
micro_batch_size_default_value = 1
if Global.gpu_total_cores is not None and Global.gpu_total_memory is not None:
memory_per_core = Global.gpu_total_memory / Global.gpu_total_cores
if memory_per_core >= 6291456:
micro_batch_size_default_value = 8
elif memory_per_core >= 4000000: # ?
micro_batch_size_default_value = 4
with gr.Column():
micro_batch_size = gr.Slider(
minimum=1, maximum=100, step=1, value=micro_batch_size_default_value,
label="Micro Batch Size",
info="The number of examples in each mini-batch for gradient computation. A smaller micro_batch_size reduces memory usage but may increase training time."
)
gradient_accumulation_steps = gr.Slider(
minimum=1, maximum=10, step=1, value=1,
label="Gradient Accumulation Steps",
info="The number of steps to accumulate gradients before updating model parameters. This can be used to simulate a larger effective batch size without increasing memory usage."
)
epochs = gr.Slider(
minimum=1, maximum=100, step=1, value=10,
label="Epochs",
info="The number of times to iterate over the entire training dataset. A larger number of epochs may improve model performance but also increase the risk of overfitting.")
learning_rate = gr.Slider(
minimum=0.00001, maximum=0.01, value=3e-4,
label="Learning Rate",
info="The initial learning rate for the optimizer. A higher learning rate may speed up convergence but also cause instability or divergence. A lower learning rate may require more steps to reach optimal performance but also avoid overshooting or oscillating around local minima."
)
with gr.Column(elem_id="finetune_eval_data_group"):
evaluate_data_count = gr.Slider(
minimum=0, maximum=1, step=1, value=0,
label="Evaluation Data Count",
info="The number of data to be used for evaluation. This specific amount of data will be randomly chosen from the training dataset for evaluating the model's performance during the process, without contributing to the actual training.",
elem_id="finetune_evaluate_data_count"
)
gr.HTML(elem_classes="flex_vertical_grow_area")
with gr.Accordion("Advanced Options", open=False, elem_id="finetune_advance_options_accordion"):
with gr.Row(elem_id="finetune_advanced_options_checkboxes"):
load_in_8bit = gr.Checkbox(
label="8bit", value=Config.load_8bit)
fp16 = gr.Checkbox(label="FP16", value=True)
bf16 = gr.Checkbox(label="BF16", value=False)
gradient_checkpointing = gr.Checkbox(
label="gradient_checkpointing", value=False)
with gr.Column(variant="panel", elem_id="finetune_additional_training_arguments_box"):
gr.Textbox(
label="Additional Training Arguments",
info="Additional training arguments to be passed to the Trainer. Note that this can override ALL other arguments set elsewhere. See https://bit.ly/hf20-transformers-training-arguments for more details.",
elem_id="finetune_additional_training_arguments_textbox_for_label_display"
)
additional_training_arguments = gr.Code(
label="JSON",
language="json",
value="",
lines=2,
elem_id="finetune_additional_training_arguments")
with gr.Box(elem_id="finetune_continue_from_model_box"):
with gr.Row():
continue_from_model = gr.Dropdown(
value="-",
label="Continue from Model",
choices=["-"],
allow_custom_value=True,
elem_id="finetune_continue_from_model"
)
continue_from_checkpoint = gr.Dropdown(
value="-",
label="Resume from Checkpoint",
choices=["-"],
elem_id="finetune_continue_from_checkpoint")
with gr.Column():
load_params_from_model_btn = gr.Button(
"Load training parameters from selected model", visible=False)
load_params_from_model_btn.style(
full_width=False,
size="sm")
load_params_from_model_message = gr.Markdown(
"", visible=False)
things_that_might_timeout.append(
continue_from_model.change(
fn=handle_continue_from_model_change,
inputs=[continue_from_model],
outputs=[
continue_from_checkpoint,
load_params_from_model_btn,
load_params_from_model_message
]
)
)
with gr.Column():
lora_r = gr.Slider(
minimum=1, maximum=16, step=1, value=8,
label="LoRA R",
info="The rank parameter for LoRA, which controls the dimensionality of the rank decomposition matrices. A larger lora_r increases the expressiveness and flexibility of LoRA but also increases the number of trainable parameters and memory usage."
)
lora_alpha = gr.Slider(
minimum=1, maximum=128, step=1, value=16,
label="LoRA Alpha",
info="The scaling parameter for LoRA, which controls how much LoRA affects the original pre-trained model weights. A larger lora_alpha amplifies the impact of LoRA but may also distort or override the pre-trained knowledge."
)
lora_dropout = gr.Slider(
minimum=0, maximum=1, value=0.05,
label="LoRA Dropout",
info="The dropout probability for LoRA, which controls the fraction of LoRA parameters that are set to zero during training. A larger lora_dropout increases the regularization effect of LoRA but also increases the risk of underfitting."
)
with gr.Column(elem_id="finetune_lora_target_modules_box"):
lora_target_modules = gr.CheckboxGroup(
label="LoRA Target Modules",
choices=default_lora_target_module_choices,
value=["q_proj", "v_proj"],
info="Modules to replace with LoRA.",
elem_id="finetune_lora_target_modules"
)
lora_target_module_choices = gr.State(
value=default_lora_target_module_choices) # type: ignore
with gr.Box(elem_id="finetune_lora_target_modules_add_box"):
with gr.Row():
lora_target_modules_add = gr.Textbox(
lines=1, max_lines=1, show_label=False,
elem_id="finetune_lora_target_modules_add"
)
lora_target_modules_add_btn = gr.Button(
"Add",
elem_id="finetune_lora_target_modules_add_btn"
)
lora_target_modules_add_btn.style(
full_width=False, size="sm")
things_that_might_timeout.append(lora_target_modules_add_btn.click(
handle_lora_target_modules_add,
inputs=[lora_target_module_choices,
lora_target_modules_add, lora_target_modules],
outputs=[lora_target_module_choices,
lora_target_modules_add, lora_target_modules],
))
with gr.Accordion("Advanced LoRA Options", open=False, elem_id="finetune_advance_lora_options_accordion"):
with gr.Column(elem_id="finetune_lora_modules_to_save_box"):
lora_modules_to_save = gr.CheckboxGroup(
label="LoRA Modules To Save",
choices=default_lora_modules_to_save_choices,
value=[],
# info="",
elem_id="finetune_lora_modules_to_save"
)
lora_modules_to_save_choices = gr.State(
value=default_lora_modules_to_save_choices) # type: ignore
with gr.Box(elem_id="finetune_lora_modules_to_save_add_box"):
with gr.Row():
lora_modules_to_save_add = gr.Textbox(
lines=1, max_lines=1, show_label=False,
elem_id="finetune_lora_modules_to_save_add"
)
lora_modules_to_save_add_btn = gr.Button(
"Add",
elem_id="finetune_lora_modules_to_save_add_btn"
)
lora_modules_to_save_add_btn.style(
full_width=False, size="sm")
things_that_might_timeout.append(lora_modules_to_save_add_btn.click(
handle_lora_modules_to_save_add,
inputs=[lora_modules_to_save_choices,
lora_modules_to_save_add, lora_modules_to_save],
outputs=[lora_modules_to_save_choices,
lora_modules_to_save_add, lora_modules_to_save],
))
with gr.Column(variant="panel", elem_id="finetune_additional_lora_config_box"):
gr.Textbox(
label="Additional LoRA Config",
info="Additional LoraConfig. Note that this can override ALL other arguments set elsewhere.",
elem_id="finetune_additional_lora_config_textbox_for_label_display"
)
additional_lora_config = gr.Code(
label="JSON",
language="json",
value="",
lines=2,
elem_id="finetune_additional_lora_config")
gr.HTML(elem_classes="flex_vertical_grow_area no_limit")
with gr.Column(elem_id="finetune_log_and_save_options_group_container"):
with gr.Row(elem_id="finetune_log_and_save_options_group"):
logging_steps = gr.Number(
label="Logging Steps",
precision=0,
value=10,
elem_id="finetune_logging_steps"
)
save_steps = gr.Number(
label="Steps Per Save",
precision=0,
value=500,
elem_id="finetune_save_steps"
)
save_total_limit = gr.Number(
label="Saved Checkpoints Limit",
precision=0,
value=5,
elem_id="finetune_save_total_limit"
)
with gr.Column(elem_id="finetune_model_name_group"):
model_name = gr.Textbox(
lines=1, label="LoRA Model Name", value=random_name,
max_lines=1,
info="The name of the new LoRA model.",
elem_id="finetune_model_name",
)
with gr.Row():
with gr.Column():
pass
with gr.Column():
with gr.Row():
train_btn = gr.Button(
"Train", variant="primary", label="Train",
elem_id="finetune_start_btn"
)
abort_button = gr.Button(
"Abort", label="Abort",
elem_id="finetune_stop_btn"
)
confirm_abort_button = gr.Button(
"Confirm Abort", label="Confirm Abort", variant="stop",
elem_id="finetune_confirm_stop_btn"
)
things_that_might_timeout.append(reload_selections_button.click(
reload_selections,
inputs=[template, dataset_from_data_dir],
outputs=[template, dataset_from_data_dir, continue_from_model],
))
for i in dataset_preview_inputs:
things_that_might_timeout.append(
i.change(
fn=refresh_preview,
inputs=dataset_preview_inputs,
outputs=[
finetune_dataset_preview,
finetune_dataset_preview_info_message,
dataset_from_text_message,
dataset_from_data_dir_message
]
).then(
fn=refresh_dataset_items_count,
inputs=dataset_preview_inputs,
outputs=[
finetune_dataset_preview_info_message,
dataset_from_text_message,
dataset_from_data_dir_message,
evaluate_data_count,
]
))
finetune_args = [
max_seq_length,
evaluate_data_count,
micro_batch_size,
gradient_accumulation_steps,
epochs,
learning_rate,
train_on_inputs,
lora_r,
lora_alpha,
lora_dropout,
lora_target_modules,
lora_modules_to_save,
load_in_8bit,
fp16,
bf16,
gradient_checkpointing,
save_steps,
save_total_limit,
logging_steps,
additional_training_arguments,
additional_lora_config,
]
things_that_might_timeout.append(
load_params_from_model_btn.click(
fn=handle_load_params_from_model,
inputs=(
[continue_from_model] +
[template, load_dataset_from, dataset_from_data_dir] +
finetune_args +
[lora_target_module_choices, lora_modules_to_save_choices]
), # type: ignore
outputs=(
[load_params_from_model_message] +
[template, load_dataset_from, dataset_from_data_dir] +
finetune_args +
[lora_target_module_choices, lora_modules_to_save_choices]
) # type: ignore
)
)
train_status = gr.HTML(
"",
label="Train Output",
elem_id="finetune_training_status")
with gr.Column(visible=False, elem_id="finetune_loss_plot_container") as loss_plot_container:
loss_plot = gr.Plot(
visible=False, show_label=False,
elem_id="finetune_loss_plot")
training_indicator = gr.HTML(
"training_indicator", visible=False, elem_id="finetune_training_indicator")
train_start = train_btn.click(
fn=do_train,
inputs=(dataset_inputs + finetune_args + [
model_name,
continue_from_model,
continue_from_checkpoint,
]),
outputs=[train_status, training_indicator,
loss_plot_container, loss_plot]
)
# controlled by JS, shows the confirm_abort_button
abort_button.click(None, None, None, None)
confirm_abort_button.click(
fn=do_abort_training,
inputs=None, outputs=None,
cancels=[train_start])
training_status_updates = finetune_ui_blocks.load(
fn=render_training_status,
inputs=None,
outputs=[train_status, training_indicator],
every=0.2
)
loss_plot_updates = finetune_ui_blocks.load(
fn=render_loss_plot,
inputs=None,
outputs=[loss_plot_container, loss_plot],
every=10
)
finetune_ui_blocks.load(_js=relative_read_file(__file__, "script.js"))
# things_that_might_timeout.append(training_status_updates)
stop_timeoutable_btn = gr.Button(
"stop not-responding elements",
elem_id="inference_stop_timeoutable_btn",
elem_classes="foot_stop_timeoutable_btn")
stop_timeoutable_btn.click(
fn=None, inputs=None, outputs=None, cancels=things_that_might_timeout)
|