Spaces:
Runtime error
Runtime error
File size: 4,512 Bytes
72ff821 6148b7c 72ff821 82f1bf5 9279c83 40a8f4e 966795b 6148b7c 87a0e23 82f1bf5 40a8f4e 72ff821 40a8f4e 82f1bf5 fd15ecb 0054cc5 03b5741 49ce4b9 87a0e23 49ce4b9 9ee06c7 883e16a 87a0e23 6148b7c 90c428d a1771a7 87a0e23 9279c83 a5d7977 40a8f4e 72ff821 9279c83 6148b7c 9279c83 6148b7c 9279c83 6148b7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import os
import subprocess
import psutil
import math
from typing import Any, Dict, List, Optional, Tuple, Union
from numba import cuda
import nvidia_smi
from .config import Config
from .utils.lru_cache import LRUCache
from .utils.model_lru_cache import ModelLRUCache
from .lib.finetune import train
class Global:
"""
A singleton class holding global states.
"""
version: Union[str, None] = None
base_model_name: str = ""
tokenizer_name = None
# Functions
train_fn: Any = train
# Training Control
should_stop_training = False
# Generation Control
should_stop_generating = False
generation_force_stopped_at = None
# Model related
loaded_models = ModelLRUCache(1)
loaded_tokenizers = LRUCache(1)
new_base_model_that_is_ready_to_be_used = None
name_of_new_base_model_that_is_ready_to_be_used = None
# GPU Info
gpu_cc = None # GPU compute capability
gpu_sms = None # GPU total number of SMs
gpu_total_cores = None # GPU total cores
gpu_total_memory = None
def initialize_global():
Global.base_model_name = Config.default_base_model_name
commit_hash = get_git_commit_hash()
if commit_hash:
Global.version = commit_hash[:8]
load_gpu_info()
def get_package_dir():
current_file_path = os.path.abspath(__file__)
parent_directory_path = os.path.dirname(current_file_path)
return os.path.abspath(parent_directory_path)
def get_git_commit_hash():
try:
original_cwd = os.getcwd()
project_dir = get_package_dir()
try:
os.chdir(project_dir)
commit_hash = subprocess.check_output(
['git', 'rev-parse', 'HEAD']).strip().decode('utf-8')
return commit_hash
except Exception as e:
print(f"Cannot get git commit hash: {e}")
finally:
os.chdir(original_cwd)
except Exception as e:
print(f"Cannot get git commit hash: {e}")
def load_gpu_info():
print("")
try:
cc_cores_per_SM_dict = {
(2, 0): 32,
(2, 1): 48,
(3, 0): 192,
(3, 5): 192,
(3, 7): 192,
(5, 0): 128,
(5, 2): 128,
(6, 0): 64,
(6, 1): 128,
(7, 0): 64,
(7, 5): 64,
(8, 0): 64,
(8, 6): 128,
(8, 9): 128,
(9, 0): 128
}
# the above dictionary should result in a value of "None" if a cc match
# is not found. The dictionary needs to be extended as new devices become
# available, and currently does not account for all Jetson devices
device = cuda.get_current_device()
device_sms = getattr(device, 'MULTIPROCESSOR_COUNT')
device_cc = device.compute_capability
cores_per_sm = cc_cores_per_SM_dict.get(device_cc)
total_cores = cores_per_sm*device_sms
print("GPU compute capability: ", device_cc)
print("GPU total number of SMs: ", device_sms)
print("GPU total cores: ", total_cores)
Global.gpu_cc = device_cc
Global.gpu_sms = device_sms
Global.gpu_total_cores = total_cores
nvidia_smi.nvmlInit()
handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)
info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
total_memory = info.total
total_memory_mb = total_memory / (1024 ** 2)
total_memory_gb = total_memory / (1024 ** 3)
# Print the memory size
print(
f"GPU total memory: {total_memory} bytes ({total_memory_mb:.2f} MB) ({total_memory_gb:.2f} GB)")
Global.gpu_total_memory = total_memory
available_cpu_ram = psutil.virtual_memory().available
available_cpu_ram_mb = available_cpu_ram / (1024 ** 2)
available_cpu_ram_gb = available_cpu_ram / (1024 ** 3)
print(
f"CPU available memory: {available_cpu_ram} bytes ({available_cpu_ram_mb:.2f} MB) ({available_cpu_ram_gb:.2f} GB)")
preserve_loaded_models_count = math.floor((available_cpu_ram * 0.8) / total_memory) - 1
if preserve_loaded_models_count > 1:
print(f"Will keep {preserve_loaded_models_count} offloaded models in CPU RAM.")
Global.loaded_models = ModelLRUCache(preserve_loaded_models_count)
Global.loaded_tokenizers = LRUCache(preserve_loaded_models_count)
except Exception as e:
print(f"Notice: cannot get GPU info: {e}")
print("")
|