Spaces:
Runtime error
Runtime error
File size: 15,969 Bytes
87a0e23 8cb0300 68255ee 8cb0300 87a0e23 fb9b56d 87a0e23 8cb0300 87a0e23 41468ea 0a36bb6 bcc3066 0a36bb6 87a0e23 27aa501 87a0e23 38fb491 87a0e23 8cb0300 87a0e23 6ac1eb1 27aa501 e652ee3 87a0e23 a5d7977 6ac1eb1 a5d7977 6ac1eb1 a5d7977 68255ee a5d7977 87a0e23 8cb0300 e652ee3 2aa964c e652ee3 68255ee 38fb491 68255ee 0a36bb6 68255ee bcc3066 0a36bb6 68255ee e652ee3 68255ee 38fb491 0a36bb6 38fb491 68255ee 38fb491 a5d7977 68255ee 4a6324a a5d7977 6ac1eb1 a5d7977 68255ee 6ac1eb1 a5d7977 fb9b56d 27aa501 fb9b56d 87a0e23 8cb0300 184ef80 8cb0300 87a0e23 bcc3066 87a0e23 8cb0300 87a0e23 8cb0300 184ef80 8cb0300 87a0e23 184ef80 87a0e23 8cb0300 6ac1eb1 8cb0300 184ef80 8cb0300 87a0e23 2aa964c 87a0e23 0a36bb6 87a0e23 41468ea 0537112 41468ea 87a0e23 38fb491 87a0e23 05ad97e 6ac1eb1 05ad97e 6ac1eb1 05ad97e 6ac1eb1 05ad97e 87a0e23 05ad97e 6ac1eb1 87a0e23 41468ea 87a0e23 41468ea 87a0e23 2aa964c f69a138 87a0e23 2aa964c 87a0e23 fb9b56d 68255ee fb9b56d 0537112 87a0e23 fb9b56d 87a0e23 e9c5abc 87a0e23 fb9b56d 27aa501 fb9b56d 38fb491 fb9b56d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import os
import sys
import re
import importlib
from typing import Any, List, Union
import json
import fire
import torch
import transformers
from datasets import Dataset, load_dataset
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
def train(
# model/data params
base_model: Any,
tokenizer: Any,
output_dir: str,
train_data: List[Any],
#
load_in_8bit=True,
fp16=True,
bf16=False,
gradient_checkpointing=False,
# training hyperparams
micro_batch_size: int = 4,
gradient_accumulation_steps: int = 32,
num_train_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 2000,
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
],
lora_modules_to_save: Union[List[str], None] = [],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # faster, but produces an odd training loss curve
# either training checkpoint or final adapter
resume_from_checkpoint=None,
save_steps: int = 200,
save_total_limit: int = 3,
logging_steps: int = 10,
#
additional_training_arguments: Union[dict, str, None] = None,
additional_lora_config: Union[dict, str, None] = None,
# logging
callbacks: List[Any] = [],
# wandb params
wandb_api_key=None,
wandb_project: str = "",
wandb_group=None,
wandb_run_name: str = "",
wandb_tags: List[str] = [],
wandb_watch: str = "false", # options: false | gradients | all
wandb_log_model: str = "true", # options: false | true
):
if lora_modules_to_save is not None and len(lora_modules_to_save) <= 0:
lora_modules_to_save = None
if isinstance(additional_training_arguments, str):
additional_training_arguments = additional_training_arguments.strip()
if not additional_training_arguments:
additional_training_arguments = None
if isinstance(additional_training_arguments, str):
try:
additional_training_arguments = json.loads(additional_training_arguments)
except Exception as e:
raise ValueError(f"Could not parse additional_training_arguments: {e}")
if isinstance(additional_lora_config, str):
additional_lora_config = additional_lora_config.strip()
if not additional_lora_config:
additional_lora_config = None
if isinstance(additional_lora_config, str):
try:
additional_lora_config = json.loads(additional_lora_config)
except Exception as e:
raise ValueError(f"Could not parse additional_lora_config: {e}")
# for logging
finetune_args = {
'micro_batch_size': micro_batch_size,
'gradient_accumulation_steps': gradient_accumulation_steps,
'num_train_epochs': num_train_epochs,
'learning_rate': learning_rate,
'cutoff_len': cutoff_len,
'val_set_size': val_set_size,
'lora_r': lora_r,
'lora_alpha': lora_alpha,
'lora_dropout': lora_dropout,
'lora_target_modules': lora_target_modules,
'lora_modules_to_save': lora_modules_to_save or [],
'train_on_inputs': train_on_inputs,
'group_by_length': group_by_length,
'load_in_8bit': load_in_8bit,
'fp16': fp16,
'bf16': bf16,
'gradient_checkpointing': gradient_checkpointing,
'save_steps': save_steps,
'save_total_limit': save_total_limit,
'logging_steps': logging_steps,
'additional_training_arguments': additional_training_arguments,
'additional_lora_config': additional_lora_config,
}
if val_set_size and val_set_size > 0:
finetune_args['val_set_size'] = val_set_size
# if lora_modules_to_save:
# finetune_args['lora_modules_to_save'] = lora_modules_to_save
if resume_from_checkpoint:
finetune_args['resume_from_checkpoint'] = resume_from_checkpoint
wandb = None
if wandb_api_key:
os.environ["WANDB_API_KEY"] = wandb_api_key
# wandb: WARNING Changes to your `wandb` environment variables will be ignored because your `wandb` session has already started. For more information on how to modify your settings with `wandb.init()` arguments, please refer to https://wandb.me/wandb-init.
# if wandb_project:
# os.environ["WANDB_PROJECT"] = wandb_project
# if wandb_run_name:
# os.environ["WANDB_RUN_NAME"] = wandb_run_name
if wandb_watch:
os.environ["WANDB_WATCH"] = wandb_watch
if wandb_log_model:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
use_wandb = (wandb_project and len(wandb_project) > 0) or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
if use_wandb:
os.environ['WANDB_MODE'] = "online"
wandb = importlib.import_module("wandb")
wandb.init(
project=wandb_project,
resume="auto",
group=wandb_group,
name=wandb_run_name,
tags=wandb_tags,
reinit=True,
magic=True,
config={'finetune_args': finetune_args},
# id=None # used for resuming
)
else:
os.environ['WANDB_MODE'] = "disabled"
if os.path.exists(output_dir):
if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
raise ValueError(
f"The output directory already exists and is not empty. ({output_dir})")
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
model = base_model
if isinstance(model, str):
model_name = model
print(f"Loading base model {model_name}...")
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_in_8bit,
torch_dtype=torch.float16,
llm_int8_skip_modules=lora_modules_to_save,
device_map=device_map,
)
if re.match("[^/]+/llama", model_name):
print(f"Setting special tokens for LLaMA model {model_name}...")
model.config.pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
print(f"Loaded model {model_name}")
if isinstance(tokenizer, str):
tokenizer_name = tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
except Exception as e:
if 'LLaMATokenizer' in str(e):
tokenizer = LlamaTokenizer.from_pretrained(
tokenizer_name,
)
else:
raise e
if re.match("[^/]+/llama", tokenizer_name):
print(
f"Setting special tokens for LLaMA tokenizer {tokenizer_name}...")
tokenizer.pad_token_id = 0
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
print(f"Loaded tokenizer {tokenizer_name}")
# tokenizer.pad_token_id = (
# 0 # unk. we want this to be different from the eos token
# )
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = data_point["prompt"] + data_point["completion"]
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = data_point["prompt"]
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
# will fail anyway.
try:
model = prepare_model_for_int8_training(model)
except Exception as e:
print(
f"Got error while running prepare_model_for_int8_training(model), maybe the model has already be prepared. Original error: {e}.")
# model = prepare_model_for_int8_training(model)
lora_config_args = {
'r': lora_r,
'lora_alpha': lora_alpha,
'target_modules': lora_target_modules,
'modules_to_save': lora_modules_to_save,
'lora_dropout': lora_dropout,
'bias': "none",
'task_type': "CAUSAL_LM",
}
config = LoraConfig(**{
**lora_config_args,
**(additional_lora_config or {}),
})
model = get_peft_model(model, config)
if bf16:
model = model.to(torch.bfloat16)
# If train_data is a list, convert it to datasets.Dataset
if isinstance(train_data, list):
with open(os.path.join(output_dir, "train_data_samples.json"), 'w') as file:
json.dump(list(train_data[:100]), file, indent=2)
train_data = Dataset.from_list(train_data)
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = (
False # So the trainer won't try loading its state
)
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
raise ValueError(f"Checkpoint {checkpoint_name} not found")
# Be more transparent about the % of trainable params.
trainable_params = 0
all_params = 0
for _, param in model.named_parameters():
all_params += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_params} || trainable%: {100 * trainable_params / all_params} (calculated)"
)
model.print_trainable_parameters()
if use_wandb and wandb:
wandb.config.update({"model": {"all_params": all_params, "trainable_params": trainable_params,
"trainable%": 100 * trainable_params / all_params}})
if val_set_size > 0:
train_val = train_data.train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = train_data.shuffle().map(generate_and_tokenize_prompt)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
# https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments
training_args = {
'output_dir': output_dir,
'per_device_train_batch_size': micro_batch_size,
'gradient_checkpointing': gradient_checkpointing,
'gradient_accumulation_steps': gradient_accumulation_steps,
'warmup_steps': 100,
'num_train_epochs': num_train_epochs,
'learning_rate': learning_rate,
'fp16': fp16,
'bf16': bf16,
'logging_steps': logging_steps,
'optim': "adamw_torch",
'evaluation_strategy': "steps" if val_set_size > 0 else "no",
'save_strategy': "steps",
'eval_steps': save_steps if val_set_size > 0 else None,
'save_steps': save_steps,
'output_dir': output_dir,
'save_total_limit': save_total_limit,
'load_best_model_at_end': True if val_set_size > 0 else False,
'ddp_find_unused_parameters': False if ddp else None,
'group_by_length': group_by_length,
'report_to': "wandb" if use_wandb else None,
'run_name': wandb_run_name if use_wandb else None,
}
# https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
tokenizer=tokenizer,
args=transformers.TrainingArguments(**{
**training_args,
**(additional_training_arguments or {})
}),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
callbacks=callbacks,
)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, "trainer_args.json"), 'w') as trainer_args_json_file:
json.dump(trainer.args.to_dict(), trainer_args_json_file, indent=2)
with open(os.path.join(output_dir, "finetune_args.json"), 'w') as finetune_args_json_file:
json.dump(finetune_args, finetune_args_json_file, indent=2)
# Not working, will only give us ["prompt", "completion", "input_ids", "attention_mask", "labels"]
# if train_data:
# with open(os.path.join(output_dir, "train_dataset_samples.json"), 'w') as file:
# json.dump(list(train_data[:100]), file, indent=2)
# if val_data:
# with open(os.path.join(output_dir, "eval_dataset_samples.json"), 'w') as file:
# json.dump(list(val_data[:100]), file, indent=2)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
train_output = trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
print(f"Model saved to {output_dir}.")
with open(os.path.join(output_dir, "trainer_log_history.jsonl"), 'w') as trainer_log_history_jsonl_file:
trainer_log_history = "\n".join(
[json.dumps(line) for line in trainer.state.log_history])
trainer_log_history_jsonl_file.write(trainer_log_history)
with open(os.path.join(output_dir, "train_output.json"), 'w') as train_output_json_file:
json.dump(train_output, train_output_json_file, indent=2)
if use_wandb and wandb:
wandb.finish()
return train_output
|