File size: 3,766 Bytes
72ff821
 
 
82f1bf5
 
9279c83
 
 
966795b
87a0e23
 
82f1bf5
 
72ff821
 
82f1bf5
 
 
 
 
 
 
49ce4b9
87a0e23
49ce4b9
9ee06c7
 
 
883e16a
 
 
 
87a0e23
 
966795b
87a0e23
9279c83
 
 
 
 
 
82f1bf5
 
d754e91
35fba55
82f1bf5
d754e91
c15d0e4
72ff821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9279c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import subprocess

from typing import Any, Dict, List, Optional, Tuple, Union

from numba import cuda
import nvidia_smi

from .utils.lru_cache import LRUCache
from .lib.finetune import train


class Global:
    version = None

    base_model: str = ""
    data_dir: str = ""
    load_8bit: bool = False

    loaded_tokenizer: Any = None
    loaded_base_model: Any = None

    # Functions
    train_fn: Any = train

    # Training Control
    should_stop_training = False

    # Generation Control
    should_stop_generating = False
    generation_force_stopped_at = None

    # Model related
    model_has_been_used = False
    cached_lora_models = LRUCache(10)

    # GPU Info
    gpu_cc = None  # GPU compute capability
    gpu_sms = None  # GPU total number of SMs
    gpu_total_cores = None  # GPU total cores
    gpu_total_memory = None

    # UI related
    ui_title: str = "LLaMA-LoRA"
    ui_emoji: str = "πŸ¦™πŸŽ›οΈ"
    ui_subtitle: str = "Toolkit for evaluating and fine-tuning LLaMA models with low-rank adaptation (LoRA)."
    ui_show_sys_info: bool = True
    ui_dev_mode: bool = False
    ui_dev_mode_title_prefix: str = "[UI DEV MODE] "


def get_package_dir():
    current_file_path = os.path.abspath(__file__)
    parent_directory_path = os.path.dirname(current_file_path)
    return os.path.abspath(parent_directory_path)


def get_git_commit_hash():
    try:
        original_cwd = os.getcwd()
        project_dir = get_package_dir()
        try:
            os.chdir(project_dir)
            commit_hash = subprocess.check_output(
                ['git', 'rev-parse', 'HEAD']).strip().decode('utf-8')
            return commit_hash
        except Exception as e:
            print(f"Cannot get git commit hash: {e}")
        finally:
            os.chdir(original_cwd)
    except Exception as e:
        print(f"Cannot get git commit hash: {e}")


commit_hash = get_git_commit_hash()

if commit_hash:
    Global.version = commit_hash[:8]


def load_gpu_info():
    try:
        cc_cores_per_SM_dict = {
            (2, 0): 32,
            (2, 1): 48,
            (3, 0): 192,
            (3, 5): 192,
            (3, 7): 192,
            (5, 0): 128,
            (5, 2): 128,
            (6, 0): 64,
            (6, 1): 128,
            (7, 0): 64,
            (7, 5): 64,
            (8, 0): 64,
            (8, 6): 128,
            (8, 9): 128,
            (9, 0): 128
        }
        # the above dictionary should result in a value of "None" if a cc match
        # is not found.  The dictionary needs to be extended as new devices become
        # available, and currently does not account for all Jetson devices
        device = cuda.get_current_device()
        device_sms = getattr(device, 'MULTIPROCESSOR_COUNT')
        device_cc = device.compute_capability
        cores_per_sm = cc_cores_per_SM_dict.get(device_cc)
        total_cores = cores_per_sm*device_sms
        print("GPU compute capability: ", device_cc)
        print("GPU total number of SMs: ", device_sms)
        print("GPU total cores: ", total_cores)
        Global.gpu_cc = device_cc
        Global.gpu_sms = device_sms
        Global.gpu_total_cores = total_cores

        nvidia_smi.nvmlInit()
        handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)
        info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
        total_memory = info.total

        total_memory_mb = total_memory / (1024 ** 2)
        total_memory_gb = total_memory / (1024 ** 3)

        # Print the memory size
        print(
            f"GPU total memory: {total_memory} bytes ({total_memory_mb:.2f} MB) ({total_memory_gb:.2f} GB)")
        Global.gpu_total_memory = total_memory

    except Exception as e:
        print(f"Notice: cannot get GPU info: {e}")


load_gpu_info()