File size: 1,992 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import Hook

from xtuner.registry import BUILDER
from xtuner.utils import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX


def split_list(lst, value):
    res = []
    tmp_res = []
    for i in lst:
        if i == value:
            res.append(tmp_res)
            tmp_res = []
        else:
            tmp_res.append(i)
    res.append(tmp_res)
    return res


class DatasetInfoHook(Hook):

    def __init__(self, tokenizer, is_intern_repo_dataset=False):
        self.tokenizer = BUILDER.build(tokenizer)
        self.is_intern_repo_dataset = is_intern_repo_dataset

    def log(self, runner, dataset, mode='train'):
        runner.logger.info(f'Num {mode} samples {len(dataset)}')
        runner.logger.info(f'{mode} example:')
        input_ids = dataset[0]['input_ids']
        if self.is_intern_repo_dataset:
            input_ids = [abs(x) for x in input_ids]
        # Try to split list to be compatible with IMAGE token
        input_ids = split_list(input_ids, IMAGE_TOKEN_INDEX)
        text = ''
        for idx, ids in enumerate(input_ids):
            text += self.tokenizer.decode(ids)
            if idx != len(input_ids) - 1:
                text += DEFAULT_IMAGE_TOKEN
        runner.logger.info(text)

    def before_train(self, runner) -> None:
        do_train = runner.train_loop is not None
        do_eval = runner.val_loop is not None
        if do_train:
            train_dataset = runner.train_dataloader.dataset
            self.log(runner, train_dataset, mode='train')
        if do_eval:
            eval_dataset = runner.val_dataloader.dataset
            self.log(runner, eval_dataset, mode='eval')

    def before_val(self, runner) -> None:
        eval_dataset = runner.val_dataloader.dataset
        self.log(runner, eval_dataset, mode='eval')

    def before_test(self, runner) -> None:
        test_dataset = runner.test_dataloader.dataset
        self.log(runner, test_dataset, mode='test')