File size: 11,549 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import os
import random
import subprocess
import sys

from mmengine.logging import print_log

import xtuner

# Define valid modes
MODES = ('list-cfg', 'copy-cfg', 'log-dataset', 'check-custom-dataset',
         'train', 'test', 'chat', 'convert', 'preprocess', 'mmbench',
         'eval_refcoco', 'mmbench_omg_seg_llava', 'gcd_omg_seg_llava', 'refcoco_omg_seg_llava',
         'region_cap_omg_seg_llava', 'region_cap_mask_omg_seg_llava', 'refcoco_omg_seg_llava_msseg')

CLI_HELP_MSG = \
    f"""
    Arguments received: {str(['xtuner'] + sys.argv[1:])}. xtuner commands use the following syntax:

        xtuner MODE MODE_ARGS ARGS

        Where   MODE (required) is one of {MODES}
                MODE_ARG (optional) is the argument for specific mode
                ARGS (optional) are the arguments for specific command

    Some usages for xtuner commands: (See more by using -h for specific command!)

        1. List all predefined configs:
            xtuner list-cfg
        2. Copy a predefined config to a given path:
            xtuner copy-cfg $CONFIG $SAVE_FILE
        3-1. Fine-tune LLMs by a single GPU:
            xtuner train $CONFIG
        3-2. Fine-tune LLMs by multiple GPUs:
            NPROC_PER_NODE=$NGPUS NNODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT ADDR=$ADDR xtuner dist_train $CONFIG $GPUS
        4-1. Convert the pth model to HuggingFace's model:
            xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
        4-2. Merge the HuggingFace's adapter to the pretrained base model:
            xtuner convert merge $LLM $ADAPTER $SAVE_PATH
            xtuner convert merge $CLIP $ADAPTER $SAVE_PATH --is-clip
        4-3. Split HuggingFace's LLM to the smallest sharded one:
            xtuner convert split $LLM $SAVE_PATH
        5-1. Chat with LLMs with HuggingFace's model and adapter:
            xtuner chat $LLM --adapter $ADAPTER --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
        5-2. Chat with VLMs with HuggingFace's model and LLaVA:
            xtuner chat $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --image $IMAGE --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
        6-1. Preprocess arxiv dataset:
            xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES
        6-2. Preprocess refcoco dataset:
            xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH
        7-1. Log processed dataset:
            xtuner log-dataset $CONFIG
        7-2. Verify the correctness of the config file for the custom dataset:
            xtuner check-custom-dataset $CONFIG
        8. MMBench evaluation:
            xtuner mmbench $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $MMBENCH_DATA_PATH
        9. Refcoco evaluation:
            xtuner eval_refcoco $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $REFCOCO_DATA_PATH
        10. List all dataset formats which are supported in XTuner

    Run special commands:

        xtuner help
        xtuner version

    GitHub: https://github.com/InternLM/xtuner
    """  # noqa: E501


CONVERT_HELP_MSG = \
    f"""
    Arguments received: {str(['xtuner'] + sys.argv[1:])}. xtuner commands use the following syntax:

        xtuner MODE MODE_ARGS ARGS

        Where   MODE (required) is one of {MODES}
                MODE_ARG (optional) is the argument for specific mode
                ARGS (optional) are the arguments for specific command

    Some usages for convert: (See more by using -h for specific command!)

        1. Convert the pth model to HuggingFace's model:
            xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
        2. Merge the HuggingFace's adapter to the pretrained LLM:
            xtuner convert merge $LLM $ADAPTER $SAVE_PATH
        3. Split HuggingFace's LLM to the smallest sharded one:
            xtuner convert split $LLM $SAVE_PATH

    GitHub: https://github.com/InternLM/xtuner
    """  # noqa: E501


PREPROCESS_HELP_MSG = \
    f"""
    Arguments received: {str(['xtuner'] + sys.argv[1:])}. xtuner commands use the following syntax:

        xtuner MODE MODE_ARGS ARGS

        Where   MODE (required) is one of {MODES}
                MODE_ARG (optional) is the argument for specific mode
                ARGS (optional) are the arguments for specific command

    Some usages for preprocess: (See more by using -h for specific command!)

        1. Preprocess arxiv dataset:
            xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES
        2. Preprocess refcoco dataset:
            xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH

    GitHub: https://github.com/InternLM/xtuner
    """  # noqa: E501

special = {
    'help': lambda: print_log(CLI_HELP_MSG, 'current'),
    'version': lambda: print_log(xtuner.__version__, 'current')
}
special = {
    **special,
    **{f'-{k[0]}': v
       for k, v in special.items()},
    **{f'--{k}': v
       for k, v in special.items()}
}


def list_dataset_format():
    from xtuner.tools import list_dataset_format
    return list_dataset_format.__file__


def list_cfg():
    from xtuner.tools import list_cfg
    return list_cfg.__file__


def copy_cfg():
    from xtuner.tools import copy_cfg
    return copy_cfg.__file__


def log_dataset():
    from xtuner.tools import log_dataset
    return log_dataset.__file__


def check_custom_dataset():
    from xtuner.tools import check_custom_dataset
    return check_custom_dataset.__file__


def train():
    from xtuner.tools import train
    return train.__file__


def test():
    from xtuner.tools import test
    return test.__file__


def chat():
    from xtuner.tools import chat
    return chat.__file__


def mmbench():
    from xtuner.tools import mmbench
    return mmbench.__file__


def pth_to_hf():
    from xtuner.tools.model_converters import pth_to_hf
    return pth_to_hf.__file__


def merge():
    from xtuner.tools.model_converters import merge
    return merge.__file__


def split():
    from xtuner.tools.model_converters import split
    return split.__file__


def arxiv_preprocess():
    from xtuner.tools.data_preprocess import arxiv as arxiv_preprocess
    return arxiv_preprocess.__file__


def convert_refcoco():
    from xtuner.tools.data_preprocess import convert_refcoco
    return convert_refcoco.__file__


def convert_help_msg():
    print_log(CONVERT_HELP_MSG, 'current')


def preprocess_help_msg():
    print_log(PREPROCESS_HELP_MSG, 'current')


def eval_refcoco():
    from xtuner.tools import eval_refcoco
    return eval_refcoco.__file__

def mmbench_omg_seg_llava():
    from omg_llava.tools import mmbench_omg_seg_llava
    return mmbench_omg_seg_llava.__file__

def gcd_omg_seg_llava():
    from omg_llava.tools import gcd_omg_seg_llava
    return gcd_omg_seg_llava.__file__

def refcoco_omg_seg_llava():
    from omg_llava.tools import refcoco_omg_seg_llava
    return refcoco_omg_seg_llava.__file__

def refcoco_omg_seg_llava_msseg():
    from omg_llava.tools import refcoco_omg_seg_llava_msseg
    return refcoco_omg_seg_llava_msseg.__file__

def region_cap_omg_seg_llava():
    from omg_llava.tools import region_cap_omg_seg_llava
    return region_cap_omg_seg_llava.__file__

def region_cap_mask_omg_seg_llava():
    from omg_llava.tools import region_cap_mask_omg_seg_llava
    return region_cap_mask_omg_seg_llava.__file__

modes = {
    'list-cfg': list_cfg,
    'copy-cfg': copy_cfg,
    'log-dataset': log_dataset,
    'check-custom-dataset': check_custom_dataset,
    'train': train,
    'test': test,
    'chat': chat,
    'mmbench': mmbench,
    'convert': {
        'pth_to_hf': pth_to_hf,
        'merge': merge,
        'split': split,
        '--help': convert_help_msg,
        '-h': convert_help_msg
    },
    'preprocess': {
        'arxiv': arxiv_preprocess,
        'refcoco': convert_refcoco,
        '--help': preprocess_help_msg,
        '-h': preprocess_help_msg
    },
    'eval_refcoco': eval_refcoco,
    'list-dataset-format': list_dataset_format,
    'mmbench_omg_seg_llava': mmbench_omg_seg_llava,
    'gcd_omg_seg_llava': gcd_omg_seg_llava,
    'refcoco_omg_seg_llava': refcoco_omg_seg_llava,
    'refcoco_omg_seg_llava_msseg': refcoco_omg_seg_llava_msseg,
    'region_cap_omg_seg_llava': region_cap_omg_seg_llava,
    'region_cap_mask_omg_seg_llava': region_cap_mask_omg_seg_llava,
}

HELP_FUNCS = [preprocess_help_msg, convert_help_msg]
MAP_FILE_FUNCS = [
    list_cfg, copy_cfg, log_dataset, check_custom_dataset, train, test, chat,
    mmbench, pth_to_hf, merge, split, arxiv_preprocess, eval_refcoco,
    convert_refcoco, list_dataset_format,

    mmbench_omg_seg_llava, gcd_omg_seg_llava, refcoco_omg_seg_llava, refcoco_omg_seg_llava_msseg,
    region_cap_omg_seg_llava, region_cap_mask_omg_seg_llava,
]


def cli():
    args = sys.argv[1:]
    if not args:  # no arguments passed
        print_log(CLI_HELP_MSG, 'current')
        return
    if args[0].lower() in special:
        special[args[0].lower()]()
        return
    elif args[0].lower() in modes:
        try:
            fn_or_dict = modes[args[0].lower()]
            n_arg = 0

            if isinstance(fn_or_dict, dict):
                n_arg += 1
                fn = fn_or_dict[args[n_arg].lower()]
            else:
                fn = fn_or_dict

            assert callable(fn)

            if fn in HELP_FUNCS:
                fn()
            else:
                slurm_launcher = False
                for i in range(n_arg + 1, len(args)):
                    if args[i] == '--launcher':
                        if i + 1 < len(args) and args[i + 1] == 'slurm':
                            slurm_launcher = True
                        break
                nnodes = int(os.environ.get('NNODES', 1))
                nproc_per_node = int(os.environ.get('NPROC_PER_NODE', 1))
                if slurm_launcher or (nnodes == 1 and nproc_per_node == 1):
                    subprocess.run(['python', fn()] + args[n_arg + 1:])
                else:
                    port = os.environ.get('PORT', None)
                    if port is None:
                        port = random.randint(20000, 29999)
                        print_log(f'Use random port: {port}', 'current',
                                  logging.WARNING)
                    torchrun_args = [
                        f'--nnodes={nnodes}',
                        f"--node_rank={os.environ.get('NODE_RANK', 0)}",
                        f'--nproc_per_node={nproc_per_node}',
                        f"--master_addr={os.environ.get('ADDR', '127.0.0.1')}",
                        f'--master_port={port}'
                    ]
                    subprocess.run(['torchrun'] + torchrun_args + [fn()] +
                                   args[n_arg + 1:] +
                                   ['--launcher', 'pytorch'])
        except Exception as e:
            print_log(f"WARNING: command error: '{e}'!", 'current',
                      logging.WARNING)
            print_log(CLI_HELP_MSG, 'current', logging.WARNING)
            return
    else:
        print_log('WARNING: command error!', 'current', logging.WARNING)
        print_log(CLI_HELP_MSG, 'current', logging.WARNING)
        return