File size: 25,669 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os.path as osp
import warnings
from collections import OrderedDict

import torch
import torch.nn as nn
from accelerate import init_empty_weights
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training
from transformers import (AddedToken, AutoConfig, CLIPImageProcessor,
                          CLIPVisionModel, LlamaForCausalLM,
                          LlamaTokenizerFast, LlavaConfig,
                          LlavaForConditionalGeneration, LlavaProcessor)
from transformers.integrations import is_deepspeed_zero3_enabled

from xtuner.registry import BUILDER
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from .modules import ProjectorConfig, ProjectorModel, dispatch_modules
from .modules.dispatch import SUPPORT_FLASH1, SUPPORT_FLASH2
from .utils import (LoadWoInit, find_all_linear_names,
                    get_peft_model_state_dict, guess_load_checkpoint,
                    make_inputs_require_grad,
                    prepare_inputs_labels_for_multimodal, traverse_dict)


def convert_state_dict_to_hf(state_dict, mapping):
    new_state_dict = {}
    for key, value in state_dict.items():
        if key.endswith('.inv_freq'):
            continue
        for key_to_modify, new_key in mapping.items():
            if key_to_modify in key:
                key = key.replace(key_to_modify, new_key)
        new_state_dict[key] = value
    return new_state_dict


class LLaVAModel(BaseModel):

    def __init__(self,
                 llm,
                 visual_encoder,
                 freeze_llm=False,
                 freeze_visual_encoder=False,
                 visual_select_layer=-2,
                 pretrained_pth=None,
                 projector_depth=2,
                 llm_lora=None,
                 visual_encoder_lora=None,
                 use_activation_checkpointing=True,
                 max_position_embeddings=None):
        super().__init__()
        self.freeze_llm = freeze_llm
        self.freeze_visual_encoder = freeze_visual_encoder
        with LoadWoInit():
            if isinstance(llm, dict):
                llm = self._dispatch_lm_model_cfg(llm, max_position_embeddings)

            self.llm = self._build_from_cfg_or_module(llm)
            self.visual_encoder = self._build_from_cfg_or_module(
                visual_encoder)
        self.llm.config.use_cache = False
        dispatch_modules(self.llm)

        self.projector_depth = projector_depth
        projector_config = ProjectorConfig(
            visual_hidden_size=self.visual_encoder.config.hidden_size,
            llm_hidden_size=self.llm.config.hidden_size,
            depth=self.projector_depth)
        self.projector = ProjectorModel(projector_config).to(
            self.visual_encoder.dtype)

        if self.freeze_llm:
            self.llm.requires_grad_(False)
        if self.freeze_visual_encoder:
            self.visual_encoder.requires_grad_(False)

        if use_activation_checkpointing:
            # For backward compatibility
            if hasattr(self.llm, 'enable_input_require_grads'):
                self.llm.enable_input_require_grads()
            else:
                self.llm.get_input_embeddings().register_forward_hook(
                    make_inputs_require_grad)
            if hasattr(self.visual_encoder, 'enable_input_require_grads'):
                self.visual_encoder.enable_input_require_grads()
            else:
                self.visual_encoder.get_input_embeddings(
                ).register_forward_hook(make_inputs_require_grad)
            self.projector.enable_input_require_grads()

            # enable gradient (activation) checkpointing for memory efficiency
            self.gradient_checkpointing_enable()

        self.use_llm_lora = llm_lora is not None
        self.use_visual_encoder_lora = visual_encoder_lora is not None

        if self.use_llm_lora:
            self._prepare_llm_for_lora(llm_lora, use_activation_checkpointing)
        if self.use_visual_encoder_lora:
            self._prepare_visual_encoder_for_lora(
                visual_encoder_lora, use_activation_checkpointing)

        if pretrained_pth is not None:
            pretrained_state_dict = guess_load_checkpoint(pretrained_pth)

            self.load_state_dict(pretrained_state_dict, strict=False)
            print_log(f'Load pretrained weight from {pretrained_pth}',
                      'current')

        self.visual_select_layer = visual_select_layer

        self._is_init = True

        self.is_first_iter = True

    def _parse_lora_config(self, lora_config):
        if isinstance(lora_config, dict) or isinstance(
                lora_config, Config) or isinstance(lora_config, ConfigDict):
            lora_config = BUILDER.build(lora_config)
        return lora_config

    def _prepare_llm_for_lora(self,
                              lora_config,
                              use_activation_checkpointing=True):
        lora_config = self._parse_lora_config(lora_config)
        self.llm = prepare_model_for_kbit_training(
            self.llm, use_activation_checkpointing)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.llm)
            lora_config.target_modules = modules
        self.llm = get_peft_model(self.llm, lora_config)

    def _prepare_visual_encoder_for_lora(self,
                                         lora_config,
                                         use_activation_checkpointing=True):
        lora_config = self._parse_lora_config(lora_config)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.visual_encoder)
            lora_config.target_modules = modules
        self.visual_encoder = get_peft_model(self.visual_encoder, lora_config)

    def gradient_checkpointing_enable(self):
        self.activation_checkpointing_enable()

    def activation_checkpointing_enable(self):
        self.llm.gradient_checkpointing_enable()
        self.visual_encoder.gradient_checkpointing_enable()
        self.projector.gradient_checkpointing_enable()

    def gradient_checkpointing_disable(self):
        self.activation_checkpointing_disable()

    def activation_checkpointing_disable(self):
        self.llm.gradient_checkpointing_disable()
        self.visual_encoder.gradient_checkpointing_disable()
        self.projector.gradient_checkpointing_disable()

    def init_weights(self):
        pass

    def state_dict(self, *args, **kwargs):
        state_dict = super().state_dict(*args, **kwargs)
        to_return = OrderedDict()
        # Step 1. visual_encoder
        if self.use_visual_encoder_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.visual_encoder, state_dict=state_dict))
        elif not self.freeze_visual_encoder:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'visual_encoder.' in k
            })
        # Step 2. LLM
        if self.use_llm_lora:
            to_return.update(
                get_peft_model_state_dict(self.llm, state_dict=state_dict))
        elif not self.freeze_llm:
            to_return.update(
                {k: v
                 for k, v in state_dict.items() if 'llm.' in k})
        # Step 3. Projector
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'projector.' in k})
        return to_return

    @staticmethod
    def _prepare_for_long_context_training(cfg, llm_cfg,
                                           max_position_embeddings):

        orig_rope_scaling = getattr(llm_cfg, 'rope_scaling', None)
        if orig_rope_scaling is None:
            orig_rope_scaling = {'factor': 1}

        orig_rope_scaling_factor = orig_rope_scaling[
            'factor'] if 'factor' in orig_rope_scaling.keys() else 1
        orig_ctx_len = getattr(llm_cfg, 'max_position_embeddings', None)
        if orig_ctx_len:
            orig_ctx_len *= orig_rope_scaling_factor
            if max_position_embeddings > orig_ctx_len:
                scaling_factor = float(
                    math.ceil(max_position_embeddings / orig_ctx_len))
                llm_cfg.rope_scaling = {
                    'type': 'linear',
                    'factor': scaling_factor
                }

        # hardcode for internlm2
        llm_cfg.attn_implementation = 'flash_attention_2'
        cfg.config = llm_cfg

        return cfg, llm_cfg

    @staticmethod
    def _prepare_for_flash_attn(cfg, llm_cfg):
        cls_name = type(llm_cfg).__name__
        SUPPORT_SDPA_ATTN = ('LlamaConfig', 'GemmaConfig', 'MistralConfig',
                             'MixtralConfig', 'Qwen2Config', 'Qwen2MoeConfig',
                             'Starcoder2Config', 'Starcoder2Config',
                             'Phi3Config')
        SUPPORT_FLASH_ATTN2 = ('InternLM2Config', 'LlamaConfig', 'GemmaConfig',
                               'MistralConfig', 'MixtralConfig', 'Qwen2Config',
                               'Qwen2MoeConfig', 'Starcoder2Config',
                               'Starcoder2Config', 'Phi3Config')

        torch_dtype = torch.bfloat16 if (
            torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
            else torch.float16

        if getattr(cfg, 'attn_implementation', None) is not None:
            # Flash Attention 2.0 only supports torch.float16 and
            # torch.bfloat16 dtypes
            if cfg.attn_implementation == 'flash_attention_2':
                cfg.torch_dtype = torch_dtype
        elif SUPPORT_FLASH2 and cls_name in SUPPORT_FLASH_ATTN2:
            cfg.torch_dtype = torch_dtype
            cfg.attn_implementation = 'flash_attention_2'
        elif SUPPORT_FLASH1 and cls_name in SUPPORT_SDPA_ATTN:
            cfg.attn_implementation = 'sdpa'

        return cfg, llm_cfg

    @staticmethod
    def _prepare_for_qlora_zero3(cfg):
        if (not is_deepspeed_zero3_enabled()) or (not hasattr(
                cfg, 'quantization_config')):
            return cfg

        torch_dtype = torch.bfloat16 if (
            torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
            else torch.float16

        cfg.torch_dtype = torch_dtype
        quantization_config = cfg.quantization_config
        quantization_config.bnb_4bit_compute_dtype = torch_dtype
        quantization_config.bnb_4bit_quant_storage = torch_dtype

        return cfg

    def _dispatch_lm_model_cfg(self, cfg, max_position_embeddings=None):
        cfg = self._prepare_for_qlora_zero3(cfg)
        pretrained_model_name_or_path = cfg.pretrained_model_name_or_path
        llm_cfg = AutoConfig.from_pretrained(
            pretrained_model_name_or_path, trust_remote_code=True)
        cfg, llm_cfg = self._prepare_for_flash_attn(cfg, llm_cfg)
        if max_position_embeddings is not None:
            cfg, llm_cfg = self._prepare_for_long_context_training(
                cfg, llm_cfg, max_position_embeddings)
        return cfg

    def _build_from_cfg_or_module(self, cfg_or_mod):
        if isinstance(cfg_or_mod, nn.Module):
            return cfg_or_mod
        elif isinstance(cfg_or_mod, dict):
            traverse_dict(cfg_or_mod)
            return BUILDER.build(cfg_or_mod)
        else:
            raise NotImplementedError

    def forward(self, data, data_samples=None, mode='loss'):
        if self.is_first_iter:
            # hardcode for qlora DeepSpeed ZeRO3, put buffers and QuantState to
            # device
            # Only required in `LLaVAModel` .
            # We do not need this in `SupervisedFinetune` .
            self.to(data['input_ids'].device)
            self.is_first_iter = False

        if 'pixel_values' in data:
            visual_outputs = self.visual_encoder(
                data['pixel_values'].to(self.visual_encoder.dtype),
                output_hidden_states=True)
            pixel_values = self.projector(
                visual_outputs.hidden_states[self.visual_select_layer][:, 1:])
            data['pixel_values'] = pixel_values
            data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data)

        if mode == 'loss':
            return self.compute_loss(data, data_samples)
        elif mode == 'predict':
            return self.predict(data, data_samples)
        elif mode == 'tensor':
            return self._forward(data, data_samples)
        else:
            raise NotImplementedError

    def _forward(self, data, data_samples=None):

        outputs = self.llm(**data)

        return outputs

    def predict(self, data, data_samples=None):
        outputs = self.llm(**data)
        logits_dict = [{'logits': logits} for logits in outputs.logits]
        return logits_dict

    def compute_loss(self, data, data_samples=None):
        outputs = self.llm(**data)
        loss_dict = {'loss': outputs.loss}
        return loss_dict

    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.llm, name)

    def to_hf(self,
              cfg,
              save_dir,
              fp32=False,
              save_pretrained_kwargs={},
              save_format='xtuner',
              **kwargs):
        if save_format == 'xtuner':
            self.to_xtuner_llava(cfg, save_dir, fp32, save_pretrained_kwargs)
        elif save_format == 'huggingface':
            self.to_huggingface_llava(cfg, save_dir, fp32,
                                      save_pretrained_kwargs)
        elif save_format == 'official':
            self.to_official_llava(cfg, save_dir, fp32, save_pretrained_kwargs)
        else:
            raise NotImplementedError

    def to_xtuner_llava(self,
                        cfg,
                        save_dir,
                        fp32=False,
                        save_pretrained_kwargs={}):
        # LLM
        self.llm.config.use_cache = True
        if not fp32:
            print_log('Convert LLM to float16', 'current')
            self.llm.half()
        if self.use_llm_lora:
            llm_path = osp.join(save_dir, 'llm_adapter')
            print_log(f'Saving LLM adapter to {llm_path}', 'current')
            self.llm.save_pretrained(llm_path, **save_pretrained_kwargs)
        elif not self.freeze_llm:
            llm_path = save_dir
            print_log(f'Saving LLM tokenizer to {llm_path}', 'current')
            tokenizer = BUILDER.build(cfg.tokenizer)
            tokenizer.save_pretrained(llm_path, **save_pretrained_kwargs)
            print_log(f'Saving LLM to {llm_path}', 'current')
            self.llm.save_pretrained(llm_path, **save_pretrained_kwargs)
        self.llm.config.use_cache = False

        # Visual Encoder
        if self.use_visual_encoder_lora:
            visual_encoder_path = osp.join(save_dir, 'visual_encoder_adapter')
            print_log(
                f'Saving visual_encoder adapter to {visual_encoder_path}',
                'current')
            self.visual_encoder.save_pretrained(visual_encoder_path,
                                                **save_pretrained_kwargs)
        elif not self.freeze_visual_encoder:
            visual_encoder_path = osp.join(save_dir, 'visual_encoder')
            print_log(
                'Saving visual_encoder image_processor to'
                f'{visual_encoder_path}', 'current')
            image_processor = BUILDER.build(cfg.image_processor)
            image_processor.save_pretrained(visual_encoder_path,
                                            **save_pretrained_kwargs)
            print_log(f'Saving visual_encoder to {visual_encoder_path}',
                      'current')
            self.visual_encoder.save_pretrained(visual_encoder_path,
                                                **save_pretrained_kwargs)

        # Projector
        projector_path = osp.join(save_dir, 'projector')
        print_log(f'Saving projector to {projector_path}', 'current')
        self.projector.save_pretrained(projector_path,
                                       **save_pretrained_kwargs)

    def to_huggingface_llava(self,
                             cfg,
                             save_dir,
                             fp32=False,
                             save_pretrained_kwargs={}):

        LLM_MAPPING = {
            'model': 'language_model.model',
            'lm_head': 'language_model.lm_head',
        }
        VIT_MAPPING = {
            'vision_model': 'vision_tower.vision_model',
        }
        PROJECTOR_MAPPING = {
            'model.0': 'multi_modal_projector.linear_1',
            'model.2': 'multi_modal_projector.linear_2',
        }

        assert getattr(self.llm, 'hf_quantizer', None) is None, \
            'This conversion format does not support quantized LLM.'

        # get state_dict
        llm = self.llm
        if self.use_llm_lora:
            llm = self.llm.merge_and_unload()
        llm.config.use_cache = True
        if not fp32:
            print_log('Convert LLM to float16', 'current')
            llm.half()

        assert isinstance(llm, LlamaForCausalLM), \
            'This conversion format only supports LlamaForCausalLM.'
        llm_state_dict = llm.state_dict()
        llm_state_dict = convert_state_dict_to_hf(llm_state_dict, LLM_MAPPING)

        need_visual_encoder = (not self.freeze_visual_encoder
                               or self.use_visual_encoder_lora)
        visual_encoder = self.visual_encoder
        if self.use_visual_encoder_lora:
            visual_encoder = self.visual_encoder.merge_and_unload()
        assert isinstance(visual_encoder, CLIPVisionModel),\
            'This conversion format only supports CLIPVisionModel.'
        if need_visual_encoder:
            visual_encoder_state_dict = visual_encoder.state_dict()
            visual_encoder_state_dict = convert_state_dict_to_hf(
                visual_encoder_state_dict, VIT_MAPPING)
        else:
            visual_encoder_state_dict = {}

        projector_state_dict = self.projector.state_dict()
        projector_state_dict = convert_state_dict_to_hf(
            projector_state_dict, PROJECTOR_MAPPING)

        state_dict = {
            **projector_state_dict,
            **llm_state_dict,
            **visual_encoder_state_dict
        }

        # init model
        text_config = llm.config
        vision_config = visual_encoder.config
        config = LlavaConfig(
            text_config=text_config,
            vision_config=vision_config,
            attn_implementation='eager')

        with init_empty_weights():
            with warnings.catch_warnings():
                warnings.filterwarnings(
                    'ignore', message='.*non-meta.*', category=UserWarning)
                model = LlavaForConditionalGeneration(config)
        model.load_state_dict(state_dict, strict=True, assign=True)

        # processor
        cfg.tokenizer.type = LlamaTokenizerFast.from_pretrained
        tokenizer = BUILDER.build(cfg.tokenizer)

        tokenizer.add_tokens(
            AddedToken(DEFAULT_IMAGE_TOKEN, special=True, normalized=False),
            special_tokens=True)
        tokenizer.add_special_tokens({'pad_token': '<pad>'})

        image_processor = BUILDER.build(cfg.image_processor)
        assert isinstance(image_processor, CLIPImageProcessor),\
            'This conversion format only supports CLIPImageProcessor.'

        processor = LlavaProcessor(
            tokenizer=tokenizer, image_processor=image_processor)

        # Pad to 64 for performance reasons
        pad_shape = 64

        pre_expansion_embeddings = \
            model.language_model.model.embed_tokens.weight.data
        mu = torch.mean(pre_expansion_embeddings, dim=0).float()
        n = pre_expansion_embeddings.size()[0]
        sigma = ((pre_expansion_embeddings - mu).T
                 @ (pre_expansion_embeddings - mu)) / n
        dist = torch.distributions.multivariate_normal.MultivariateNormal(
            mu, covariance_matrix=1e-5 * sigma)

        # We add an image token so we need to resize the model
        ori_vocab_size = config.text_config.vocab_size
        tokenizer_vocab_size = tokenizer.encode('<pad>')[-1]
        added_token = tokenizer_vocab_size - ori_vocab_size

        if added_token > 0:
            model.resize_token_embeddings(ori_vocab_size + added_token,
                                          pad_shape)
            model.language_model.model.embed_tokens.weight.data[
                ori_vocab_size:] = torch.stack(
                    tuple(
                        dist.sample()
                        for _ in range(model.language_model.model.embed_tokens.
                                       weight.data[ori_vocab_size:].shape[0])),
                    dim=0,
                )
            model.language_model.lm_head.weight.data[
                ori_vocab_size:] = torch.stack(
                    tuple(dist.sample()
                          for _ in range(model.language_model.lm_head.weight.
                                         data[ori_vocab_size:].shape[0])),
                    dim=0,
                )
        model.config.image_token_index = tokenizer.encode(
            DEFAULT_IMAGE_TOKEN)[-1]
        model.config.pad_token_id = tokenizer.encode('<pad>')[-1]

        # save
        print_log(f'Saving to {save_dir}', 'current')
        model.save_pretrained(save_dir, **save_pretrained_kwargs)
        processor.save_pretrained(save_dir, **save_pretrained_kwargs)

    def to_official_llava(self,
                          cfg,
                          save_dir,
                          fp32=False,
                          save_pretrained_kwargs={}):

        VIT_MAPPING = {
            'vision_model': 'model.vision_tower.vision_tower.vision_model',
        }
        PROJECTOR_MAPPING = {
            'model.0': 'model.mm_projector.0',
            'model.2': 'model.mm_projector.2',
        }

        try:
            from llava.model import LlavaConfig, LlavaLlamaForCausalLM
        except ImportError:
            raise ImportError(
                'Please install llava with '
                '`pip install git+https://github.com/haotian-liu/LLaVA.git '
                '--no-deps`.')

        assert getattr(self.llm, 'hf_quantizer', None) is None, \
            'This conversion format does not support quantized LLM.'

        # get state_dict
        llm = self.llm
        if self.use_llm_lora:
            llm = self.llm.merge_and_unload()
        llm.config.use_cache = True
        if not fp32:
            print_log('Convert LLM to float16', 'current')
            llm.half()

        assert isinstance(llm, LlamaForCausalLM), \
            'This conversion format only supports LlamaForCausalLM.'
        llm_state_dict = llm.state_dict()

        need_visual_encoder = (not self.freeze_visual_encoder
                               or self.use_visual_encoder_lora)
        visual_encoder = self.visual_encoder
        if self.use_visual_encoder_lora:
            visual_encoder = self.visual_encoder.merge_and_unload()
        assert isinstance(visual_encoder, CLIPVisionModel),\
            'This conversion format only supports CLIPVisionModel.'
        if need_visual_encoder:
            visual_encoder_state_dict = visual_encoder.state_dict()
            visual_encoder_state_dict = convert_state_dict_to_hf(
                visual_encoder_state_dict, VIT_MAPPING)
        else:
            visual_encoder_state_dict = {}

        projector_state_dict = self.projector.state_dict()
        projector_state_dict = convert_state_dict_to_hf(
            projector_state_dict, PROJECTOR_MAPPING)

        state_dict = {
            **projector_state_dict,
            **llm_state_dict,
            **visual_encoder_state_dict
        }

        # init model
        tokenizer = BUILDER.build(cfg.tokenizer)
        image_processor = BUILDER.build(cfg.image_processor)
        assert isinstance(image_processor, CLIPImageProcessor),\
            'This conversion format only supports CLIPImageProcessor.'

        llava_config_dict = llm.config.__dict__.copy()
        llava_config_dict.update(
            dict(
                image_aspect_ratio='pad',
                mm_hidden_size=visual_encoder.config.hidden_size,
                mm_projector_type=f'mlp{self.projector_depth}x_gelu',
                mm_use_im_patch_token=False,
                mm_use_im_start_end=False,
                mm_vision_select_feature='patch',
                mm_vision_select_layer=self.visual_select_layer,
                mm_vision_tower=visual_encoder.config.name_or_path,
                unfreeze_mm_vision_tower=need_visual_encoder,
                model_type='llava',
                use_cache=True,
                use_mm_proj=True))

        llava_config = LlavaConfig(**llava_config_dict)

        with init_empty_weights():
            with warnings.catch_warnings():
                warnings.filterwarnings(
                    'ignore', message='.*non-meta.*', category=UserWarning)
                model = LlavaLlamaForCausalLM(llava_config)

        model.load_state_dict(state_dict, strict=True, assign=True)

        # save
        print_log(f'Saving to {save_dir}', 'current')

        model.save_pretrained(save_dir, **save_pretrained_kwargs)
        image_processor.save_pretrained(save_dir, **save_pretrained_kwargs)
        tokenizer.save_pretrained(save_dir, **save_pretrained_kwargs)