Spaces:
Runtime error
Runtime error
File size: 25,669 Bytes
476ac07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os.path as osp
import warnings
from collections import OrderedDict
import torch
import torch.nn as nn
from accelerate import init_empty_weights
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training
from transformers import (AddedToken, AutoConfig, CLIPImageProcessor,
CLIPVisionModel, LlamaForCausalLM,
LlamaTokenizerFast, LlavaConfig,
LlavaForConditionalGeneration, LlavaProcessor)
from transformers.integrations import is_deepspeed_zero3_enabled
from xtuner.registry import BUILDER
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from .modules import ProjectorConfig, ProjectorModel, dispatch_modules
from .modules.dispatch import SUPPORT_FLASH1, SUPPORT_FLASH2
from .utils import (LoadWoInit, find_all_linear_names,
get_peft_model_state_dict, guess_load_checkpoint,
make_inputs_require_grad,
prepare_inputs_labels_for_multimodal, traverse_dict)
def convert_state_dict_to_hf(state_dict, mapping):
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith('.inv_freq'):
continue
for key_to_modify, new_key in mapping.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
new_state_dict[key] = value
return new_state_dict
class LLaVAModel(BaseModel):
def __init__(self,
llm,
visual_encoder,
freeze_llm=False,
freeze_visual_encoder=False,
visual_select_layer=-2,
pretrained_pth=None,
projector_depth=2,
llm_lora=None,
visual_encoder_lora=None,
use_activation_checkpointing=True,
max_position_embeddings=None):
super().__init__()
self.freeze_llm = freeze_llm
self.freeze_visual_encoder = freeze_visual_encoder
with LoadWoInit():
if isinstance(llm, dict):
llm = self._dispatch_lm_model_cfg(llm, max_position_embeddings)
self.llm = self._build_from_cfg_or_module(llm)
self.visual_encoder = self._build_from_cfg_or_module(
visual_encoder)
self.llm.config.use_cache = False
dispatch_modules(self.llm)
self.projector_depth = projector_depth
projector_config = ProjectorConfig(
visual_hidden_size=self.visual_encoder.config.hidden_size,
llm_hidden_size=self.llm.config.hidden_size,
depth=self.projector_depth)
self.projector = ProjectorModel(projector_config).to(
self.visual_encoder.dtype)
if self.freeze_llm:
self.llm.requires_grad_(False)
if self.freeze_visual_encoder:
self.visual_encoder.requires_grad_(False)
if use_activation_checkpointing:
# For backward compatibility
if hasattr(self.llm, 'enable_input_require_grads'):
self.llm.enable_input_require_grads()
else:
self.llm.get_input_embeddings().register_forward_hook(
make_inputs_require_grad)
if hasattr(self.visual_encoder, 'enable_input_require_grads'):
self.visual_encoder.enable_input_require_grads()
else:
self.visual_encoder.get_input_embeddings(
).register_forward_hook(make_inputs_require_grad)
self.projector.enable_input_require_grads()
# enable gradient (activation) checkpointing for memory efficiency
self.gradient_checkpointing_enable()
self.use_llm_lora = llm_lora is not None
self.use_visual_encoder_lora = visual_encoder_lora is not None
if self.use_llm_lora:
self._prepare_llm_for_lora(llm_lora, use_activation_checkpointing)
if self.use_visual_encoder_lora:
self._prepare_visual_encoder_for_lora(
visual_encoder_lora, use_activation_checkpointing)
if pretrained_pth is not None:
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
self.load_state_dict(pretrained_state_dict, strict=False)
print_log(f'Load pretrained weight from {pretrained_pth}',
'current')
self.visual_select_layer = visual_select_layer
self._is_init = True
self.is_first_iter = True
def _parse_lora_config(self, lora_config):
if isinstance(lora_config, dict) or isinstance(
lora_config, Config) or isinstance(lora_config, ConfigDict):
lora_config = BUILDER.build(lora_config)
return lora_config
def _prepare_llm_for_lora(self,
lora_config,
use_activation_checkpointing=True):
lora_config = self._parse_lora_config(lora_config)
self.llm = prepare_model_for_kbit_training(
self.llm, use_activation_checkpointing)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.llm)
lora_config.target_modules = modules
self.llm = get_peft_model(self.llm, lora_config)
def _prepare_visual_encoder_for_lora(self,
lora_config,
use_activation_checkpointing=True):
lora_config = self._parse_lora_config(lora_config)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.visual_encoder)
lora_config.target_modules = modules
self.visual_encoder = get_peft_model(self.visual_encoder, lora_config)
def gradient_checkpointing_enable(self):
self.activation_checkpointing_enable()
def activation_checkpointing_enable(self):
self.llm.gradient_checkpointing_enable()
self.visual_encoder.gradient_checkpointing_enable()
self.projector.gradient_checkpointing_enable()
def gradient_checkpointing_disable(self):
self.activation_checkpointing_disable()
def activation_checkpointing_disable(self):
self.llm.gradient_checkpointing_disable()
self.visual_encoder.gradient_checkpointing_disable()
self.projector.gradient_checkpointing_disable()
def init_weights(self):
pass
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
to_return = OrderedDict()
# Step 1. visual_encoder
if self.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.visual_encoder, state_dict=state_dict))
elif not self.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'visual_encoder.' in k
})
# Step 2. LLM
if self.use_llm_lora:
to_return.update(
get_peft_model_state_dict(self.llm, state_dict=state_dict))
elif not self.freeze_llm:
to_return.update(
{k: v
for k, v in state_dict.items() if 'llm.' in k})
# Step 3. Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'projector.' in k})
return to_return
@staticmethod
def _prepare_for_long_context_training(cfg, llm_cfg,
max_position_embeddings):
orig_rope_scaling = getattr(llm_cfg, 'rope_scaling', None)
if orig_rope_scaling is None:
orig_rope_scaling = {'factor': 1}
orig_rope_scaling_factor = orig_rope_scaling[
'factor'] if 'factor' in orig_rope_scaling.keys() else 1
orig_ctx_len = getattr(llm_cfg, 'max_position_embeddings', None)
if orig_ctx_len:
orig_ctx_len *= orig_rope_scaling_factor
if max_position_embeddings > orig_ctx_len:
scaling_factor = float(
math.ceil(max_position_embeddings / orig_ctx_len))
llm_cfg.rope_scaling = {
'type': 'linear',
'factor': scaling_factor
}
# hardcode for internlm2
llm_cfg.attn_implementation = 'flash_attention_2'
cfg.config = llm_cfg
return cfg, llm_cfg
@staticmethod
def _prepare_for_flash_attn(cfg, llm_cfg):
cls_name = type(llm_cfg).__name__
SUPPORT_SDPA_ATTN = ('LlamaConfig', 'GemmaConfig', 'MistralConfig',
'MixtralConfig', 'Qwen2Config', 'Qwen2MoeConfig',
'Starcoder2Config', 'Starcoder2Config',
'Phi3Config')
SUPPORT_FLASH_ATTN2 = ('InternLM2Config', 'LlamaConfig', 'GemmaConfig',
'MistralConfig', 'MixtralConfig', 'Qwen2Config',
'Qwen2MoeConfig', 'Starcoder2Config',
'Starcoder2Config', 'Phi3Config')
torch_dtype = torch.bfloat16 if (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
else torch.float16
if getattr(cfg, 'attn_implementation', None) is not None:
# Flash Attention 2.0 only supports torch.float16 and
# torch.bfloat16 dtypes
if cfg.attn_implementation == 'flash_attention_2':
cfg.torch_dtype = torch_dtype
elif SUPPORT_FLASH2 and cls_name in SUPPORT_FLASH_ATTN2:
cfg.torch_dtype = torch_dtype
cfg.attn_implementation = 'flash_attention_2'
elif SUPPORT_FLASH1 and cls_name in SUPPORT_SDPA_ATTN:
cfg.attn_implementation = 'sdpa'
return cfg, llm_cfg
@staticmethod
def _prepare_for_qlora_zero3(cfg):
if (not is_deepspeed_zero3_enabled()) or (not hasattr(
cfg, 'quantization_config')):
return cfg
torch_dtype = torch.bfloat16 if (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
else torch.float16
cfg.torch_dtype = torch_dtype
quantization_config = cfg.quantization_config
quantization_config.bnb_4bit_compute_dtype = torch_dtype
quantization_config.bnb_4bit_quant_storage = torch_dtype
return cfg
def _dispatch_lm_model_cfg(self, cfg, max_position_embeddings=None):
cfg = self._prepare_for_qlora_zero3(cfg)
pretrained_model_name_or_path = cfg.pretrained_model_name_or_path
llm_cfg = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=True)
cfg, llm_cfg = self._prepare_for_flash_attn(cfg, llm_cfg)
if max_position_embeddings is not None:
cfg, llm_cfg = self._prepare_for_long_context_training(
cfg, llm_cfg, max_position_embeddings)
return cfg
def _build_from_cfg_or_module(self, cfg_or_mod):
if isinstance(cfg_or_mod, nn.Module):
return cfg_or_mod
elif isinstance(cfg_or_mod, dict):
traverse_dict(cfg_or_mod)
return BUILDER.build(cfg_or_mod)
else:
raise NotImplementedError
def forward(self, data, data_samples=None, mode='loss'):
if self.is_first_iter:
# hardcode for qlora DeepSpeed ZeRO3, put buffers and QuantState to
# device
# Only required in `LLaVAModel` .
# We do not need this in `SupervisedFinetune` .
self.to(data['input_ids'].device)
self.is_first_iter = False
if 'pixel_values' in data:
visual_outputs = self.visual_encoder(
data['pixel_values'].to(self.visual_encoder.dtype),
output_hidden_states=True)
pixel_values = self.projector(
visual_outputs.hidden_states[self.visual_select_layer][:, 1:])
data['pixel_values'] = pixel_values
data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data)
if mode == 'loss':
return self.compute_loss(data, data_samples)
elif mode == 'predict':
return self.predict(data, data_samples)
elif mode == 'tensor':
return self._forward(data, data_samples)
else:
raise NotImplementedError
def _forward(self, data, data_samples=None):
outputs = self.llm(**data)
return outputs
def predict(self, data, data_samples=None):
outputs = self.llm(**data)
logits_dict = [{'logits': logits} for logits in outputs.logits]
return logits_dict
def compute_loss(self, data, data_samples=None):
outputs = self.llm(**data)
loss_dict = {'loss': outputs.loss}
return loss_dict
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.llm, name)
def to_hf(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={},
save_format='xtuner',
**kwargs):
if save_format == 'xtuner':
self.to_xtuner_llava(cfg, save_dir, fp32, save_pretrained_kwargs)
elif save_format == 'huggingface':
self.to_huggingface_llava(cfg, save_dir, fp32,
save_pretrained_kwargs)
elif save_format == 'official':
self.to_official_llava(cfg, save_dir, fp32, save_pretrained_kwargs)
else:
raise NotImplementedError
def to_xtuner_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
# LLM
self.llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
self.llm.half()
if self.use_llm_lora:
llm_path = osp.join(save_dir, 'llm_adapter')
print_log(f'Saving LLM adapter to {llm_path}', 'current')
self.llm.save_pretrained(llm_path, **save_pretrained_kwargs)
elif not self.freeze_llm:
llm_path = save_dir
print_log(f'Saving LLM tokenizer to {llm_path}', 'current')
tokenizer = BUILDER.build(cfg.tokenizer)
tokenizer.save_pretrained(llm_path, **save_pretrained_kwargs)
print_log(f'Saving LLM to {llm_path}', 'current')
self.llm.save_pretrained(llm_path, **save_pretrained_kwargs)
self.llm.config.use_cache = False
# Visual Encoder
if self.use_visual_encoder_lora:
visual_encoder_path = osp.join(save_dir, 'visual_encoder_adapter')
print_log(
f'Saving visual_encoder adapter to {visual_encoder_path}',
'current')
self.visual_encoder.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
elif not self.freeze_visual_encoder:
visual_encoder_path = osp.join(save_dir, 'visual_encoder')
print_log(
'Saving visual_encoder image_processor to'
f'{visual_encoder_path}', 'current')
image_processor = BUILDER.build(cfg.image_processor)
image_processor.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
print_log(f'Saving visual_encoder to {visual_encoder_path}',
'current')
self.visual_encoder.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
# Projector
projector_path = osp.join(save_dir, 'projector')
print_log(f'Saving projector to {projector_path}', 'current')
self.projector.save_pretrained(projector_path,
**save_pretrained_kwargs)
def to_huggingface_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
LLM_MAPPING = {
'model': 'language_model.model',
'lm_head': 'language_model.lm_head',
}
VIT_MAPPING = {
'vision_model': 'vision_tower.vision_model',
}
PROJECTOR_MAPPING = {
'model.0': 'multi_modal_projector.linear_1',
'model.2': 'multi_modal_projector.linear_2',
}
assert getattr(self.llm, 'hf_quantizer', None) is None, \
'This conversion format does not support quantized LLM.'
# get state_dict
llm = self.llm
if self.use_llm_lora:
llm = self.llm.merge_and_unload()
llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
llm.half()
assert isinstance(llm, LlamaForCausalLM), \
'This conversion format only supports LlamaForCausalLM.'
llm_state_dict = llm.state_dict()
llm_state_dict = convert_state_dict_to_hf(llm_state_dict, LLM_MAPPING)
need_visual_encoder = (not self.freeze_visual_encoder
or self.use_visual_encoder_lora)
visual_encoder = self.visual_encoder
if self.use_visual_encoder_lora:
visual_encoder = self.visual_encoder.merge_and_unload()
assert isinstance(visual_encoder, CLIPVisionModel),\
'This conversion format only supports CLIPVisionModel.'
if need_visual_encoder:
visual_encoder_state_dict = visual_encoder.state_dict()
visual_encoder_state_dict = convert_state_dict_to_hf(
visual_encoder_state_dict, VIT_MAPPING)
else:
visual_encoder_state_dict = {}
projector_state_dict = self.projector.state_dict()
projector_state_dict = convert_state_dict_to_hf(
projector_state_dict, PROJECTOR_MAPPING)
state_dict = {
**projector_state_dict,
**llm_state_dict,
**visual_encoder_state_dict
}
# init model
text_config = llm.config
vision_config = visual_encoder.config
config = LlavaConfig(
text_config=text_config,
vision_config=vision_config,
attn_implementation='eager')
with init_empty_weights():
with warnings.catch_warnings():
warnings.filterwarnings(
'ignore', message='.*non-meta.*', category=UserWarning)
model = LlavaForConditionalGeneration(config)
model.load_state_dict(state_dict, strict=True, assign=True)
# processor
cfg.tokenizer.type = LlamaTokenizerFast.from_pretrained
tokenizer = BUILDER.build(cfg.tokenizer)
tokenizer.add_tokens(
AddedToken(DEFAULT_IMAGE_TOKEN, special=True, normalized=False),
special_tokens=True)
tokenizer.add_special_tokens({'pad_token': '<pad>'})
image_processor = BUILDER.build(cfg.image_processor)
assert isinstance(image_processor, CLIPImageProcessor),\
'This conversion format only supports CLIPImageProcessor.'
processor = LlavaProcessor(
tokenizer=tokenizer, image_processor=image_processor)
# Pad to 64 for performance reasons
pad_shape = 64
pre_expansion_embeddings = \
model.language_model.model.embed_tokens.weight.data
mu = torch.mean(pre_expansion_embeddings, dim=0).float()
n = pre_expansion_embeddings.size()[0]
sigma = ((pre_expansion_embeddings - mu).T
@ (pre_expansion_embeddings - mu)) / n
dist = torch.distributions.multivariate_normal.MultivariateNormal(
mu, covariance_matrix=1e-5 * sigma)
# We add an image token so we need to resize the model
ori_vocab_size = config.text_config.vocab_size
tokenizer_vocab_size = tokenizer.encode('<pad>')[-1]
added_token = tokenizer_vocab_size - ori_vocab_size
if added_token > 0:
model.resize_token_embeddings(ori_vocab_size + added_token,
pad_shape)
model.language_model.model.embed_tokens.weight.data[
ori_vocab_size:] = torch.stack(
tuple(
dist.sample()
for _ in range(model.language_model.model.embed_tokens.
weight.data[ori_vocab_size:].shape[0])),
dim=0,
)
model.language_model.lm_head.weight.data[
ori_vocab_size:] = torch.stack(
tuple(dist.sample()
for _ in range(model.language_model.lm_head.weight.
data[ori_vocab_size:].shape[0])),
dim=0,
)
model.config.image_token_index = tokenizer.encode(
DEFAULT_IMAGE_TOKEN)[-1]
model.config.pad_token_id = tokenizer.encode('<pad>')[-1]
# save
print_log(f'Saving to {save_dir}', 'current')
model.save_pretrained(save_dir, **save_pretrained_kwargs)
processor.save_pretrained(save_dir, **save_pretrained_kwargs)
def to_official_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
VIT_MAPPING = {
'vision_model': 'model.vision_tower.vision_tower.vision_model',
}
PROJECTOR_MAPPING = {
'model.0': 'model.mm_projector.0',
'model.2': 'model.mm_projector.2',
}
try:
from llava.model import LlavaConfig, LlavaLlamaForCausalLM
except ImportError:
raise ImportError(
'Please install llava with '
'`pip install git+https://github.com/haotian-liu/LLaVA.git '
'--no-deps`.')
assert getattr(self.llm, 'hf_quantizer', None) is None, \
'This conversion format does not support quantized LLM.'
# get state_dict
llm = self.llm
if self.use_llm_lora:
llm = self.llm.merge_and_unload()
llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
llm.half()
assert isinstance(llm, LlamaForCausalLM), \
'This conversion format only supports LlamaForCausalLM.'
llm_state_dict = llm.state_dict()
need_visual_encoder = (not self.freeze_visual_encoder
or self.use_visual_encoder_lora)
visual_encoder = self.visual_encoder
if self.use_visual_encoder_lora:
visual_encoder = self.visual_encoder.merge_and_unload()
assert isinstance(visual_encoder, CLIPVisionModel),\
'This conversion format only supports CLIPVisionModel.'
if need_visual_encoder:
visual_encoder_state_dict = visual_encoder.state_dict()
visual_encoder_state_dict = convert_state_dict_to_hf(
visual_encoder_state_dict, VIT_MAPPING)
else:
visual_encoder_state_dict = {}
projector_state_dict = self.projector.state_dict()
projector_state_dict = convert_state_dict_to_hf(
projector_state_dict, PROJECTOR_MAPPING)
state_dict = {
**projector_state_dict,
**llm_state_dict,
**visual_encoder_state_dict
}
# init model
tokenizer = BUILDER.build(cfg.tokenizer)
image_processor = BUILDER.build(cfg.image_processor)
assert isinstance(image_processor, CLIPImageProcessor),\
'This conversion format only supports CLIPImageProcessor.'
llava_config_dict = llm.config.__dict__.copy()
llava_config_dict.update(
dict(
image_aspect_ratio='pad',
mm_hidden_size=visual_encoder.config.hidden_size,
mm_projector_type=f'mlp{self.projector_depth}x_gelu',
mm_use_im_patch_token=False,
mm_use_im_start_end=False,
mm_vision_select_feature='patch',
mm_vision_select_layer=self.visual_select_layer,
mm_vision_tower=visual_encoder.config.name_or_path,
unfreeze_mm_vision_tower=need_visual_encoder,
model_type='llava',
use_cache=True,
use_mm_proj=True))
llava_config = LlavaConfig(**llava_config_dict)
with init_empty_weights():
with warnings.catch_warnings():
warnings.filterwarnings(
'ignore', message='.*non-meta.*', category=UserWarning)
model = LlavaLlamaForCausalLM(llava_config)
model.load_state_dict(state_dict, strict=True, assign=True)
# save
print_log(f'Saving to {save_dir}', 'current')
model.save_pretrained(save_dir, **save_pretrained_kwargs)
image_processor.save_pretrained(save_dir, **save_pretrained_kwargs)
tokenizer.save_pretrained(save_dir, **save_pretrained_kwargs)
|