File size: 9,181 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple

import torch
import torch.distributed as dist
import torch.nn.functional as F
from mmengine import MessageHub

from .triton_kernels import apply_rotary_emb

SUPPORT_FLASH2 = False

try:
    from flash_attn import flash_attn_func, flash_attn_varlen_func

    SUPPORT_FLASH2 = True
except ImportError:
    pass


class InternLMRotaryEmbedding(torch.nn.Module):

    def __init__(self,
                 dim,
                 max_position_embeddings=2048,
                 base=10000,
                 device=None):
        super().__init__()
        self.inv_freq = 1.0 / (
            base**(torch.arange(0, dim, 2).float().to(device) / dim))

        # Build here to make `torch.jit.trace` work.
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(
            self.max_seq_len_cached,
            device=self.inv_freq.device,
            dtype=self.inv_freq.dtype)
        freqs = torch.einsum('i,j->ij', t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        self.cos_cached = emb.cos()
        self.sin_cached = emb.sin()

    def forward(self, x, seq_len):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if (seq_len > self.max_seq_len_cached
                or self.cos_cached.device != x.device
                or self.cos_cached.dtype != x.dtype):
            self.max_seq_len_cached = seq_len
            assert self.inv_freq.dtype == torch.float32
            t = torch.arange(
                self.max_seq_len_cached,
                device=x.device,
                dtype=self.inv_freq.dtype)
            freqs = torch.einsum('i,j->ij', t, self.inv_freq.to(t.device))
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.cos_cached = emb.cos().to(x.dtype)
            self.sin_cached = emb.sin().to(x.dtype)
        return (
            self.cos_cached[:seq_len, ...],
            self.sin_cached[:seq_len, ...],
        )


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., :x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def internlm_attn_forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
           Optional[Tuple[torch.Tensor]]]:
    # Modified from https://huggingface.co/internlm/internlm-7b/blob/939a68c0dc1bd5f35b63c87d44af05ce33379061/modeling_internlm.py#L161  # noqa:E501
    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads,
                                                   self.head_dim).transpose(
                                                       1, 2)
    key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads,
                                                 self.head_dim).transpose(
                                                     1, 2)
    value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads,
                                                   self.head_dim).transpose(
                                                       1, 2)

    kv_seq_len = key_states.shape[-2]
    if past_key_value is not None:
        kv_seq_len += past_key_value[0].shape[-2]
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
                                                    cos, sin, position_ids)
    # [bsz, nh, t, hd]

    if past_key_value is not None:
        # reuse k, v, self_attention
        key_states = torch.cat([past_key_value[0], key_states], dim=2)
        value_states = torch.cat([past_key_value[1], value_states], dim=2)

    past_key_value = (key_states, value_states) if use_cache else None

    if SUPPORT_FLASH2:
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        attn_output = flash_attn_func(
            query_states, key_states, value_states, causal=True)
        attn_output = attn_output.contiguous()
    else:
        # use flash attention implemented by pytorch
        attn_output = F.scaled_dot_product_attention(
            query_states, key_states, value_states, attn_mask=attention_mask)
        attn_output = attn_output.transpose(1, 2)

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

    attn_output = self.o_proj(attn_output)

    # Due to the implementation of the PyTorch version of flash attention,
    # even when the output_attentions flag is set to True, it is not possible
    # to return the attn_weights.
    return attn_output, None, past_key_value


def internlm_varlen_attn_forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
           Optional[Tuple[torch.Tensor]]]:
    # Modified from https://huggingface.co/internlm/internlm-7b/blob/939a68c0dc1bd5f35b63c87d44af05ce33379061/modeling_internlm.py#L161  # noqa:E501

    message_hub = MessageHub.get_instance('varlen_attn_args')
    rank = dist.get_rank()
    cumulative_len = message_hub.get_info(f'cumulative_len_rank_{rank}')
    # position_ids = message_hub.get_info(f'position_ids_rank_{rank}')
    max_seqlen = message_hub.get_info(f'max_seqlen_rank_{rank}')
    use_varlen_atten = (cumulative_len is not None)

    bsz, q_len, _ = hidden_states.size()
    assert bsz == 1, (f'If utilizing local attention, the batch size should be'
                      f' set to 1, but got {bsz}')

    query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads,
                                                   self.head_dim)
    key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads,
                                                 self.head_dim)
    value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads,
                                                   self.head_dim)

    kv_seq_len = key_states.shape[-3]
    if past_key_value is not None:
        kv_seq_len += past_key_value[0].shape[-2]

    if use_varlen_atten:
        cos, sin = self.rotary_emb(value_states, max_seqlen)
        query_states = apply_rotary_emb(query_states,
                                        cos[position_ids].squeeze(0),
                                        sin[position_ids].squeeze(0))
        key_states = apply_rotary_emb(key_states, cos[position_ids].squeeze(0),
                                      sin[position_ids].squeeze(0))
    else:
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        cos, sin = self.rotary_emb(value_states, kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(
            query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

    assert SUPPORT_FLASH2
    if use_varlen_atten:
        q_unpad, k_unpad, v_unpad = query_states.flatten(
            0, 1), key_states.flatten(0, 1), value_states.flatten(0, 1)
        cumulative_len = torch.cat(cumulative_len, dim=0)
        attn_output = flash_attn_varlen_func(
            q_unpad,
            k_unpad,
            v_unpad,
            cumulative_len,
            cumulative_len,
            max_seqlen,
            max_seqlen,
            0,
            return_attn_probs=False,
            causal=True,
        )
    else:
        attn_output = flash_attn_func(
            query_states, key_states, value_states, causal=True)

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

    attn_output = self.o_proj(attn_output)

    # Due to the implementation of the PyTorch version of flash attention,
    # even when the output_attentions flag is set to True, it is not possible
    # to return the attn_weights.
    return attn_output, None, past_key_value