File size: 21,404 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Optional, Tuple

import torch
import torch.distributed as dist
from mmengine import MessageHub
from transformers.models.llama.modeling_llama import (apply_rotary_pos_emb,
                                                      repeat_kv)
from transformers.utils import is_flash_attn_greater_or_equal_2_10

from .attention import (SUPPORT_FLASH2, flash_attn_w_mask, flash_attn_wo_mask,
                        varlen_flash_attn)
from .triton_kernels import apply_rotary_emb

try:
    from transformers.cache_utils import Cache
except ImportError:

    class Cache:
        pass


def repeat_kv_bshd(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """The hidden states go from (batch, seqlen, num_key_value_heads, head_dim)
    to (batch, seqlen, num_attention_heads, head_dim)"""
    batch, slen, num_key_value_heads, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, :,
                                  None, :].expand(batch, slen,
                                                  num_key_value_heads, n_rep,
                                                  head_dim)
    return hidden_states.reshape(batch, slen, num_key_value_heads * n_rep,
                                 head_dim)


def llama_attn_forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.LongTensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Cache] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
    cache_position: Optional[torch.LongTensor] = None,
    **kwargs,
):
    # Modified from https://github.com/huggingface/transformers/blob/66ce9593fdb8e340df546ddd0774eb444f17a12c/src/transformers/models/llama/modeling_llama.py#L422  # noqa:E501
    output_attentions = False

    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    # Flash attention requires the input to have the shape
    # batch_size x seq_length x head_dim x hidden_dim
    # therefore we just need to keep the original shape
    query_states = query_states.view(bsz, q_len, self.num_heads,
                                     self.head_dim).transpose(1, 2)
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
                                 self.head_dim).transpose(1, 2)
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
                                     self.head_dim).transpose(1, 2)

    cos, sin = self.rotary_emb(value_states, position_ids)
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
                                                    cos, sin)

    past_key_value = getattr(self, 'past_key_value', past_key_value)

    if past_key_value is not None:
        # sin and cos are specific to RoPE models;
        # cache_position needed for the static cache
        cache_kwargs = {
            'sin': sin,
            'cos': cos,
            'cache_position': cache_position
        }
        key_states, value_states = past_key_value.update(
            key_states, value_states, self.layer_idx, cache_kwargs)

    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    assert SUPPORT_FLASH2
    query_states = query_states.transpose(1, 2)
    key_states = key_states.transpose(1, 2)
    value_states = value_states.transpose(1, 2)

    # In PEFT, usually we cast the layer norms in float32 for training
    # stability reasons therefore the input hidden states gets silently
    # casted in float32. Hence, we need cast them back in the correct dtype
    # just to be sure everything works as expected.
    # This might slowdown training & inference so it is recommended to not
    # cast the LayerNorms in fp32. (LlamaRMSNorm handles it correctly)

    input_dtype = query_states.dtype
    if input_dtype == torch.float32:
        if torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        # Handle the case where the model is quantized
        elif hasattr(self.config, '_pre_quantization_dtype'):
            target_dtype = self.config._pre_quantization_dtype
        else:
            target_dtype = self.q_proj.weight.dtype

        query_states = query_states.to(target_dtype)
        key_states = key_states.to(target_dtype)
        value_states = value_states.to(target_dtype)

    dropout_rate = self.attention_dropout if self.training else 0.0

    if is_flash_attn_greater_or_equal_2_10():
        causal = self.is_causal
    else:
        # TODO: Remove the `q_len != 1` check once Flash Attention for RoCm
        # is bumped to 2.1. For details, please see the comment in
        # LlamaFlashAttention2 __init__.
        causal = self.is_causal and q_len != 1

    # the shape of attention_mask used by flash_attn and
    # F.scaled_dot_product_attention are different
    assert attention_mask is None or attention_mask.ndim == 2, \
        ('When using flash_attn, attention_mask.ndim should equal to 2.'
            f'But got attention_mask.shape = {attention_mask.shape}.'
            'We can pass the `attn_implementation="flash_attention_2"` flag '
            'to `.from_pretrained` method when instantiating a Internlm2 '
            'model.')

    if attention_mask is not None:
        attn_output = flash_attn_w_mask(
            query_states,
            key_states,
            value_states,
            attention_mask,
            causal=causal,
            dropout_p=dropout_rate,
            training=self.training)
    else:
        attn_output = flash_attn_wo_mask(
            query_states,
            key_states,
            value_states,
            causal=causal,
            dropout_p=dropout_rate,
            training=self.training)

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
    attn_output = self.o_proj(attn_output)

    if not output_attentions:
        attn_weights = None

    return attn_output, attn_weights, past_key_value


def llama_attn_forward_legacy(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Cache] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
    **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
           Optional[Tuple[torch.Tensor]]]:
    # Modified from https://github.com/huggingface/transformers/blob/ced9fd86f55ebb6b656c273f6e23f8ba50652f83/src/transformers/models/llama/modeling_llama.py#L331  # noqa:E501
    if 'padding_mask' in kwargs:
        warnings.warn(
            'Passing `padding_mask` is deprecated and will be removed in '
            'v4.37. Please make sure use `attention_mask` instead.`')

    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    query_states = query_states.view(bsz, q_len, self.num_heads,
                                     self.head_dim).transpose(1, 2)
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
                                 self.head_dim).transpose(1, 2)
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
                                     self.head_dim).transpose(1, 2)

    kv_seq_len = key_states.shape[-2]
    if past_key_value is not None:
        if self.layer_idx is None:
            raise ValueError(
                'The cache structure has changed since version v4.36. '
                f'If you are using {self.__class__.__name__} '
                'for auto-regressive decoding with k/v caching, '
                'please make sure to initialize the attention class '
                'with a layer index.')
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len,
                                                       self.layer_idx)
    assert position_ids is not None
    if self.training:
        cos, sin = self.rotary_emb(
            value_states, seq_len=position_ids.max() + 1)
    else:
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
                                                    cos, sin, position_ids)

    if past_key_value is not None:
        cache_kwargs = {'sin': sin, 'cos': cos}  # Specific to RoPE models
        key_states, value_states = past_key_value.update(
            key_states, value_states, self.layer_idx, cache_kwargs)

    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    assert SUPPORT_FLASH2
    query_states = query_states.transpose(1, 2)
    key_states = key_states.transpose(1, 2)
    value_states = value_states.transpose(1, 2)

    # In PEFT, usually we cast the layer norms in float32 for training
    # stability reasons therefore the input hidden states gets silently
    # casted in float32. Hence, we need cast them back in the correct dtype
    # just to be sure everything works as expected.
    # This might slowdown training & inference so it is recommended to not
    # cast the LayerNorms in fp32. (LlamaRMSNorm handles it correctly)

    input_dtype = query_states.dtype
    if input_dtype == torch.float32:
        if torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        # Handle the case where the model is quantized
        elif hasattr(self.config, '_pre_quantization_dtype'):
            target_dtype = self.config._pre_quantization_dtype
        else:
            target_dtype = self.q_proj.weight.dtype

        query_states = query_states.to(target_dtype)
        key_states = key_states.to(target_dtype)
        value_states = value_states.to(target_dtype)

    dropout_rate = self.attention_dropout if self.training else 0.0

    if is_flash_attn_greater_or_equal_2_10():
        causal = self.is_causal
    else:
        # TODO: Remove the `q_len != 1` check once Flash Attention for RoCm
        # is bumped to 2.1. For details, please see the comment in
        # LlamaFlashAttention2 __init__.
        causal = self.is_causal and q_len != 1

    # the shape of attention_mask used by flash_attn and
    # F.scaled_dot_product_attention are different
    assert attention_mask is None or attention_mask.ndim == 2, \
        ('When using flash_attn, attention_mask.ndim should equal to 2.'
            f'But got attention_mask.shape = {attention_mask.shape}.'
            'We can pass the `attn_implementation="flash_attention_2"` flag '
            'to `.from_pretrained` method when instantiating a Internlm2 '
            'model.')

    if attention_mask is not None:
        attn_output = flash_attn_w_mask(
            query_states,
            key_states,
            value_states,
            attention_mask=attention_mask,
            causal=causal,
            dropout_p=dropout_rate,
            training=self.training)
    else:
        attn_output = flash_attn_wo_mask(
            query_states,
            key_states,
            value_states,
            causal=causal,
            dropout_p=dropout_rate,
            training=self.training)

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
    attn_output = self.o_proj(attn_output)

    # Due to the implementation of the PyTorch version of flash attention,
    # even when the output_attentions flag is set to True, it is not possible
    # to return the attn_weights.
    return attn_output, None, past_key_value


def llama_varlen_attn_forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Cache] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
    cache_position: Optional[torch.LongTensor] = None,
    **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
           Optional[Tuple[torch.Tensor]]]:

    message_hub = MessageHub.get_instance('varlen_attn_args')
    rank = dist.get_rank()
    cumulative_len = message_hub.get_info(f'cumulative_len_rank_{rank}')
    max_seqlen = message_hub.get_info(f'max_seqlen_rank_{rank}')
    use_varlen_atten = (cumulative_len is not None)

    if 'padding_mask' in kwargs:
        warnings.warn('Passing `padding_mask` is deprecated and will be '
                      'removed in v4.37. Please make sure use '
                      '`attention_mask` instead.`')
    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    query_states = query_states.view(bsz, q_len, self.num_heads,
                                     self.head_dim).transpose(1, 2)
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
                                 self.head_dim).transpose(1, 2)
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
                                     self.head_dim).transpose(1, 2)

    cos, sin = self.rotary_emb(value_states, position_ids)
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
                                                    cos, sin)

    past_key_value = getattr(self, 'past_key_value', past_key_value)

    if past_key_value is not None:
        # sin and cos are specific to RoPE models;
        # cache_position needed for the static cache
        cache_kwargs = {
            'sin': sin,
            'cos': cos,
            'cache_position': cache_position
        }
        key_states, value_states = past_key_value.update(
            key_states, value_states, self.layer_idx, cache_kwargs)

    query_states = query_states.transpose(1, 2)
    key_states = key_states.transpose(1, 2)
    value_states = value_states.transpose(1, 2)

    # repeat kv for sequence parallel
    key_states = repeat_kv_bshd(key_states, self.num_key_value_groups)
    value_states = repeat_kv_bshd(value_states, self.num_key_value_groups)

    dropout_rate = self.attention_dropout if self.training else 0.0

    # In PEFT, usually we cast the layer norms in float32 for training
    # stability reasons therefore the input hidden states gets silently casted
    # in float32. Hence, we need cast them back in the correct dtype
    # just to be sure everything works as expected.
    # This might slowdown training & inference so it is recommended to not
    # cast the LayerNorms in fp32. (LlamaRMSNorm handles it correctly)

    input_dtype = query_states.dtype
    if input_dtype == torch.float32:
        if torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        # Handle the case where the model is quantized
        elif hasattr(self.config, '_pre_quantization_dtype'):
            target_dtype = self.config._pre_quantization_dtype
        else:
            target_dtype = self.q_proj.weight.dtype

        query_states = query_states.to(target_dtype)
        key_states = key_states.to(target_dtype)
        value_states = value_states.to(target_dtype)

    assert SUPPORT_FLASH2
    if use_varlen_atten:
        attn_output = varlen_flash_attn(
            query_states,
            key_states,
            value_states,
            cumulative_len,
            max_seqlen,
            causal=True,
            dropout_p=dropout_rate,
            training=self.training)
    else:
        attn_output = flash_attn_wo_mask(
            query_states,
            key_states,
            value_states,
            causal=True,
            training=self.training)

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
    attn_output = self.o_proj(attn_output)

    return attn_output, None, past_key_value


def llama_varlen_attn_forward_legacy(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Cache] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
    **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
           Optional[Tuple[torch.Tensor]]]:

    message_hub = MessageHub.get_instance('varlen_attn_args')
    rank = dist.get_rank()
    cumulative_len = message_hub.get_info(f'cumulative_len_rank_{rank}')
    max_seqlen = message_hub.get_info(f'max_seqlen_rank_{rank}')
    use_varlen_atten = (cumulative_len is not None)

    if 'padding_mask' in kwargs:
        warnings.warn('Passing `padding_mask` is deprecated and will be '
                      'removed in v4.37. Please make sure use '
                      '`attention_mask` instead.`')
    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
                                 self.head_dim)
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
                                     self.head_dim)

    kv_seq_len = key_states.shape[-3]
    if past_key_value is not None:
        if self.layer_idx is None:
            raise ValueError(
                'The cache structure has changed since version v4.36. '
                f'If you are using {self.__class__.__name__} '
                'for auto-regressive decoding with k/v caching, '
                'please make sure to initialize the attention class '
                'with a layer index.')
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len,
                                                       self.layer_idx)

    if use_varlen_atten:
        cos, sin = self.rotary_emb(value_states, max_seqlen)
        # position_ids (1, seq_len)
        # cos, sin  (1, seq_len, dim) -> (seq_len, dim)
        cos = cos[position_ids].squeeze(0)
        sin = sin[position_ids].squeeze(0)
        query_states = apply_rotary_emb(query_states, cos, sin)
        key_states = apply_rotary_emb(key_states, cos, sin)
    else:
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        cos, sin = self.rotary_emb(value_states, kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(
            query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            cache_kwargs = {'sin': sin, 'cos': cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.layer_idx, cache_kwargs)

        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

    # repeat kv for sequence parallel
    key_states = repeat_kv_bshd(key_states, self.num_key_value_groups)
    value_states = repeat_kv_bshd(value_states, self.num_key_value_groups)

    dropout_rate = self.attention_dropout if self.training else 0.0

    # In PEFT, usually we cast the layer norms in float32 for training
    # stability reasons therefore the input hidden states gets silently casted
    # in float32. Hence, we need cast them back in the correct dtype
    # just to be sure everything works as expected.
    # This might slowdown training & inference so it is recommended to not
    # cast the LayerNorms in fp32. (LlamaRMSNorm handles it correctly)

    input_dtype = query_states.dtype
    if input_dtype == torch.float32:
        if torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        # Handle the case where the model is quantized
        elif hasattr(self.config, '_pre_quantization_dtype'):
            target_dtype = self.config._pre_quantization_dtype
        else:
            target_dtype = self.q_proj.weight.dtype

        query_states = query_states.to(target_dtype)
        key_states = key_states.to(target_dtype)
        value_states = value_states.to(target_dtype)

    assert SUPPORT_FLASH2
    if use_varlen_atten:
        attn_output = varlen_flash_attn(
            query_states,
            key_states,
            value_states,
            cumulative_len,
            max_seqlen,
            causal=True,
            dropout_p=dropout_rate,
            training=self.training)
    else:
        attn_output = flash_attn_wo_mask(
            query_states,
            key_states,
            value_states,
            causal=True,
            dropout_p=dropout_rate,
            training=self.training)

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

    attn_output = self.o_proj(attn_output)

    # Due to the implementation of the PyTorch version of flash attention,
    # even when the output_attentions flag is set to True, it is not possible
    # to return the attn_weights.
    return attn_output, None, past_key_value