File size: 2,315 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn.functional as F

try:
    from flash_attn.bert_padding import index_first_axis, unpad_input
except ImportError:
    pass


def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(
        torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


def upad_qkv(query_layer, key_layer, value_layer, attention_mask,
             query_length):
    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
        attention_mask)
    batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

    key_layer = index_first_axis(
        key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
                          head_dim), indices_k)
    value_layer = index_first_axis(
        value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
                            head_dim), indices_k)
    if query_length == kv_seq_len:
        # Different from the origin version as sequence parallel change
        # the number of attention heads.
        query_layer = index_first_axis(
            query_layer.reshape(batch_size * kv_seq_len, -1, head_dim),
            indices_k)
        cu_seqlens_q = cu_seqlens_k
        max_seqlen_in_batch_q = max_seqlen_in_batch_k
        indices_q = indices_k
    elif query_length == 1:
        max_seqlen_in_batch_q = 1
        cu_seqlens_q = torch.arange(
            batch_size + 1, dtype=torch.int32, device=query_layer.device
        )  # There is a memcpy here, that is very bad.
        indices_q = cu_seqlens_q[:-1]
        query_layer = query_layer.squeeze(1)
    else:
        # The -q_len: slice assumes left padding.
        attention_mask = attention_mask[:, -query_length:]
        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = \
            unpad_input(query_layer, attention_mask)

    return (
        query_layer,
        key_layer,
        value_layer,
        indices_q,
        (cu_seqlens_q, cu_seqlens_k),
        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
    )