Spaces:
Runtime error
Runtime error
File size: 12,718 Bytes
476ac07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from collections import OrderedDict
from contextlib import nullcontext
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from mmengine.runner import load_checkpoint
from peft import get_peft_model, prepare_model_for_kbit_training
from torch import nn
from transformers import AutoConfig, PreTrainedModel, PreTrainedTokenizer
from transformers.integrations import is_deepspeed_zero3_enabled
from xtuner.parallel.sequence import (get_sequence_parallel_group,
get_sequence_parallel_world_size,
reduce_sequence_parallel_loss,
split_for_sequence_parallel)
from xtuner.registry import BUILDER
from .modules import dispatch_modules
from .modules.dispatch import SUPPORT_FLASH1, SUPPORT_FLASH2
from .utils import (LoadWoInit, find_all_linear_names,
get_peft_model_state_dict, make_inputs_require_grad,
traverse_dict)
def smart_tokenizer_and_embedding_resize(
tokenizer: PreTrainedTokenizer,
model: PreTrainedModel,
):
"""Resize embedding."""
if is_deepspeed_zero3_enabled():
import deepspeed
params = [model.get_input_embeddings().weight]
if model.get_output_embeddings(
) is not None and not model.config.tie_word_embeddings:
params.append(model.get_output_embeddings().weight)
context_maybe_zero3 = deepspeed.zero.GatheredParameters(
params, modifier_rank=0)
else:
context_maybe_zero3 = nullcontext()
with context_maybe_zero3:
current_embedding_size = model.get_input_embeddings().weight.size(0)
if len(tokenizer) > current_embedding_size:
assert isinstance(model.get_output_embeddings(), nn.Linear)
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
with context_maybe_zero3:
num_new_tokens = len(tokenizer) - current_embedding_size
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
print_log(
f'Resized token embeddings from {current_embedding_size} to '
f'{len(tokenizer)}.', 'current')
class SupervisedFinetune(BaseModel):
def __init__(self,
llm,
lora=None,
peft_model=None,
use_activation_checkpointing=True,
use_varlen_attn=False,
tokenizer=None,
max_position_embeddings=None):
super().__init__()
with LoadWoInit():
if isinstance(llm, dict):
llm = self._dispatch_lm_model_cfg(llm, max_position_embeddings)
self.llm = self._build_from_cfg_or_module(llm)
if tokenizer is not None:
if isinstance(tokenizer, dict):
tokenizer = BUILDER.build(tokenizer)
smart_tokenizer_and_embedding_resize(tokenizer, self.llm)
self.llm.config.use_cache = False
dispatch_modules(self.llm, use_varlen_attn=use_varlen_attn)
if use_activation_checkpointing:
# For backward compatibility
if hasattr(self.llm, 'enable_input_require_grads'):
self.llm.enable_input_require_grads()
else:
self.llm.get_input_embeddings().register_forward_hook(
make_inputs_require_grad)
# enable gradient checkpointing for memory efficiency
self.gradient_checkpointing_enable()
if isinstance(lora, dict) or isinstance(lora, Config) or isinstance(
lora, ConfigDict):
self.lora = BUILDER.build(lora)
else:
self.lora = lora
self.peft_model = peft_model
self.use_lora = lora is not None
if self.use_lora:
self._prepare_for_lora(peft_model, use_activation_checkpointing)
self._is_init = True
# Determines whether to calculate attention based on the
# seq_len dimension (use_varlen_attn = False) or the actual length of
# the sequence.
self.use_varlen_attn = use_varlen_attn
def gradient_checkpointing_enable(self):
self.activation_checkpointing_enable()
def activation_checkpointing_enable(self):
self.llm.gradient_checkpointing_enable()
def gradient_checkpointing_disable(self):
self.activation_checkpointing_disable()
def activation_checkpointing_disable(self):
self.llm.gradient_checkpointing_disable()
def _prepare_for_lora(self,
peft_model=None,
use_activation_checkpointing=True):
self.llm = prepare_model_for_kbit_training(
self.llm, use_activation_checkpointing)
if self.lora.target_modules is None:
modules = find_all_linear_names(self.llm)
self.lora.target_modules = modules
self.llm = get_peft_model(self.llm, self.lora)
if peft_model is not None:
_ = load_checkpoint(self, peft_model)
def init_weights(self):
pass
@staticmethod
def _prepare_for_long_context_training(cfg, llm_cfg,
max_position_embeddings):
if not hasattr(llm_cfg, 'rope_scaling'):
print_log('Current model does not support RoPE scaling.',
'current')
return
current_max_length = getattr(llm_cfg, 'max_position_embeddings', None)
if current_max_length and max_position_embeddings > current_max_length:
print_log(
f'Enlarge max model length from {current_max_length} '
f'to {max_position_embeddings}.', 'current')
scaling_factor = float(
math.ceil(max_position_embeddings / current_max_length))
else:
print_log(
'The input `max_position_embeddings` is smaller than '
'origin max length. Consider increase input length.',
'current')
scaling_factor = 1.0
cfg.rope_scaling = {'type': 'linear', 'factor': scaling_factor}
return cfg
@staticmethod
def _prepare_for_flash_attn(cfg, llm_cfg):
cls_name = type(llm_cfg).__name__
SUPPORT_SDPA_ATTN = ('LlamaConfig', 'GemmaConfig', 'MistralConfig',
'MixtralConfig', 'Qwen2Config', 'Qwen2MoeConfig',
'Starcoder2Config', 'Starcoder2Config',
'Phi3Config')
SUPPORT_FLASH_ATTN2 = ('InternLM2Config', 'LlamaConfig', 'GemmaConfig',
'MistralConfig', 'MixtralConfig', 'Qwen2Config',
'Qwen2MoeConfig', 'Starcoder2Config',
'Starcoder2Config', 'Phi3Config',
'DeepseekV2Config')
torch_dtype = torch.bfloat16 if (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
else torch.float16
if getattr(cfg, 'attn_implementation', None) is not None:
# Flash Attention 2.0 only supports torch.float16 and
# torch.bfloat16 dtypes
if cfg.attn_implementation == 'flash_attention_2':
cfg.torch_dtype = torch_dtype
elif SUPPORT_FLASH2 and cls_name in SUPPORT_FLASH_ATTN2:
cfg.torch_dtype = torch_dtype
cfg.attn_implementation = 'flash_attention_2'
elif SUPPORT_FLASH1 and cls_name in SUPPORT_SDPA_ATTN:
cfg.attn_implementation = 'sdpa'
return cfg
@staticmethod
def _prepare_for_qlora_zero3(cfg):
if (not is_deepspeed_zero3_enabled()) or (not hasattr(
cfg, 'quantization_config')):
return cfg
torch_dtype = torch.bfloat16 if (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
else torch.float16
cfg.torch_dtype = torch_dtype
quantization_config = cfg.quantization_config
quantization_config.bnb_4bit_compute_dtype = torch_dtype
quantization_config.bnb_4bit_quant_storage = torch_dtype
return cfg
def _dispatch_lm_model_cfg(self, cfg, max_position_embeddings=None):
cfg = self._prepare_for_qlora_zero3(cfg)
pretrained_model_name_or_path = cfg.pretrained_model_name_or_path
llm_cfg = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=True)
cfg = self._prepare_for_flash_attn(cfg, llm_cfg)
if max_position_embeddings is not None:
cfg = self._prepare_for_long_context_training(
cfg, llm_cfg, max_position_embeddings)
return cfg
def _build_from_cfg_or_module(self, cfg_or_mod):
if isinstance(cfg_or_mod, nn.Module):
return cfg_or_mod
elif isinstance(cfg_or_mod, dict):
traverse_dict(cfg_or_mod)
return BUILDER.build(cfg_or_mod)
else:
raise NotImplementedError
def forward(self, data, data_samples=None, mode='loss'):
if mode == 'loss':
return self.compute_loss(data, data_samples)
elif mode == 'predict':
return self.predict(data, data_samples)
elif mode == 'tensor':
return self._forward(data, data_samples)
else:
raise NotImplementedError
def _forward(self, data, data_samples=None):
outputs = self.llm(**data)
return outputs
def predict(self, data, data_samples=None):
outputs = self.llm(**data)
logits_dict = [{'logits': logits} for logits in outputs.logits]
return logits_dict
@staticmethod
def _split_for_sequence_parallel(data):
# attention mask should not be split
ARGS_NEED_TO_SPLIT = ('input_ids', 'labels', 'position_ids')
sp_group = get_sequence_parallel_group()
for key in ARGS_NEED_TO_SPLIT:
val = data.get(key, None)
if val is not None:
# `dim` is 1 as the shape of tensor is (bs, seq_len, ...)
data[key] = split_for_sequence_parallel(
val, dim=1, sp_group=sp_group)
return data
def _compute_sequence_parallel_loss(self, data):
data = self._split_for_sequence_parallel(data)
outputs = self.llm(**data)
labels = data['labels']
num_tokens = (labels != -100).sum()
sp_group = get_sequence_parallel_group()
loss = reduce_sequence_parallel_loss(outputs.loss, num_tokens,
sp_group)
return {'loss': loss}
def compute_loss(self, data, data_samples=None):
if get_sequence_parallel_world_size() > 1:
return self._compute_sequence_parallel_loss(data)
else:
outputs = self.llm(**data)
loss_dict = {'loss': outputs.loss}
return loss_dict
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
if not self.use_lora:
return state_dict
to_return = get_peft_model_state_dict(self.llm, state_dict=state_dict)
return OrderedDict(to_return)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.llm, name)
def to_hf(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={},
**kwargs):
self.llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
self.llm.half()
if self.use_lora:
print_log(f'Saving adapter to {save_dir}', 'current')
else:
print_log(f'Saving LLM tokenizer to {save_dir}', 'current')
tokenizer = BUILDER.build(cfg.tokenizer)
tokenizer.save_pretrained(save_dir)
print_log(f'Saving LLM to {save_dir}', 'current')
self.llm.save_pretrained(save_dir, **save_pretrained_kwargs)
self.llm.config.use_cache = False
|