File size: 6,077 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) OpenMMLab. All rights reserved.
import torch.distributed as dist

_SEQUENCE_PARALLEL_GROUP = None
_SEQUENCE_PARALLEL_WORLD_SIZE = None
_SEQUENCE_PARALLEL_RANK = None

_INNER_SEQUENCE_PARALLEL_GROUP = None
_INNER_SEQUENCE_PARALLEL_WORLD_SIZE = None
_INNER_SEQUENCE_PARALLEL_RANK = None

_DATA_PARALLEL_GROUP = None
_DATA_PARALLEL_WORLD_SIZE = None
_DATA_PARALLEL_RANK = None


def init_sequence_parallel(sequence_parallel_size: int = 1):
    assert dist.is_initialized()
    world_size: int = dist.get_world_size()

    # enable_ds_sequence_parallel = sequence_parallel_size > 1
    # if enable_ds_sequence_parallel:
    if world_size % sequence_parallel_size != 0:
        raise RuntimeError(f'world_size ({world_size}) is not divisible by '
                           f'sequence_parallel_size {sequence_parallel_size}')

    num_sequence_parallel_groups: int = world_size // sequence_parallel_size

    rank = dist.get_rank()

    # Build the sequence parallel groups.
    global _SEQUENCE_PARALLEL_GROUP
    assert _SEQUENCE_PARALLEL_GROUP is None, \
        'sequence parallel group is already initialized'
    for i in range(num_sequence_parallel_groups):
        ranks = range(i * sequence_parallel_size,
                      (i + 1) * sequence_parallel_size)
        group = dist.new_group(ranks)
        if rank in ranks:
            _SEQUENCE_PARALLEL_GROUP = group

    global _DATA_PARALLEL_GROUP
    assert _DATA_PARALLEL_GROUP is None, \
        'data parallel group is already initialized'
    all_data_parallel_group_ranks = []
    start_rank = 0
    end_rank = world_size
    for j in range(sequence_parallel_size):
        ranks = range(start_rank + j, end_rank, sequence_parallel_size)
        all_data_parallel_group_ranks.append(list(ranks))
        group = dist.new_group(ranks)
        if rank in ranks:
            _DATA_PARALLEL_GROUP = group


def init_inner_sequence_parallel(inner_sequence_parallel_size: int = 1):
    """Build the sequence parallel inner groups.

    They are helpful when sp size is not evenly divided by the number of attn
    heads.
    """
    assert _SEQUENCE_PARALLEL_GROUP is not None, \
        ('Please call `init_inner_sequence_parallel` after calling '
         '`init_sequence_parallel`.')

    rank = dist.get_rank()
    world_size: int = dist.get_world_size()

    n_inner_group = world_size // inner_sequence_parallel_size

    global _INNER_SEQUENCE_PARALLEL_GROUP
    assert _INNER_SEQUENCE_PARALLEL_GROUP is None

    for i in range(n_inner_group):
        ranks = range(i * inner_sequence_parallel_size,
                      (i + 1) * inner_sequence_parallel_size)
        group = dist.new_group(ranks)
        if rank in ranks:
            _INNER_SEQUENCE_PARALLEL_GROUP = group


def is_inner_sequence_parallel_initialized():
    return _INNER_SEQUENCE_PARALLEL_GROUP is not None


def get_inner_sequence_parallel_group():
    return _INNER_SEQUENCE_PARALLEL_GROUP


def get_inner_sequence_parallel_world_size():
    global _INNER_SEQUENCE_PARALLEL_WORLD_SIZE
    if _INNER_SEQUENCE_PARALLEL_WORLD_SIZE is not None:
        return _INNER_SEQUENCE_PARALLEL_WORLD_SIZE
    if not dist.is_initialized() or (_INNER_SEQUENCE_PARALLEL_GROUP is None):
        _INNER_SEQUENCE_PARALLEL_WORLD_SIZE = 1
    else:
        _INNER_SEQUENCE_PARALLEL_WORLD_SIZE = dist.get_world_size(
            group=get_inner_sequence_parallel_group())
    return _INNER_SEQUENCE_PARALLEL_WORLD_SIZE


def get_inner_sequence_parallel_rank():
    global _INNER_SEQUENCE_PARALLEL_RANK
    if _INNER_SEQUENCE_PARALLEL_RANK is not None:
        return _INNER_SEQUENCE_PARALLEL_RANK
    if not dist.is_initialized() or (_INNER_SEQUENCE_PARALLEL_GROUP is None):
        _INNER_SEQUENCE_PARALLEL_RANK = 0
    else:
        _INNER_SEQUENCE_PARALLEL_RANK = dist.get_rank(
            group=get_inner_sequence_parallel_group())
    return _INNER_SEQUENCE_PARALLEL_RANK


def get_sequence_parallel_group():
    """Get the sequence parallel group the caller rank belongs to."""
    return _SEQUENCE_PARALLEL_GROUP


def get_sequence_parallel_world_size():
    """Return world size for the sequence parallel group."""
    global _SEQUENCE_PARALLEL_WORLD_SIZE
    if _SEQUENCE_PARALLEL_WORLD_SIZE is not None:
        return _SEQUENCE_PARALLEL_WORLD_SIZE
    if not dist.is_initialized() or (_SEQUENCE_PARALLEL_GROUP is None):
        _SEQUENCE_PARALLEL_WORLD_SIZE = 1
    else:
        _SEQUENCE_PARALLEL_WORLD_SIZE = dist.get_world_size(
            group=get_sequence_parallel_group())
    return _SEQUENCE_PARALLEL_WORLD_SIZE


def get_sequence_parallel_rank():
    """Return my rank for the sequence parallel group."""
    global _SEQUENCE_PARALLEL_RANK
    if _SEQUENCE_PARALLEL_RANK is not None:
        return _SEQUENCE_PARALLEL_RANK
    if not dist.is_initialized() or (_SEQUENCE_PARALLEL_GROUP is None):
        _SEQUENCE_PARALLEL_RANK = 0
    else:
        _SEQUENCE_PARALLEL_RANK = dist.get_rank(
            group=get_sequence_parallel_group())
    return _SEQUENCE_PARALLEL_RANK


def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP is not None, \
        'data parallel group is not initialized'
    return _DATA_PARALLEL_GROUP


def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    global _DATA_PARALLEL_WORLD_SIZE
    if _DATA_PARALLEL_WORLD_SIZE is not None:
        return _DATA_PARALLEL_WORLD_SIZE
    if not dist.is_initialized():
        _DATA_PARALLEL_WORLD_SIZE = 1
    else:
        _DATA_PARALLEL_WORLD_SIZE = dist.get_world_size(
            group=get_data_parallel_group())
    return _DATA_PARALLEL_WORLD_SIZE


def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    global _DATA_PARALLEL_RANK
    if _DATA_PARALLEL_RANK is not None:
        return _DATA_PARALLEL_RANK
    if not dist.is_initialized():
        _DATA_PARALLEL_RANK = 0
    else:
        _DATA_PARALLEL_RANK = dist.get_rank(group=get_data_parallel_group())
    return _DATA_PARALLEL_RANK