File size: 11,736 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import re

import torch
import tqdm
from huggingface_hub import snapshot_download
from mmengine.dist import get_dist_info, init_dist, master_only
from mmengine.utils.dl_utils import set_multi_processing
from peft import PeftModel
from torch import distributed as dist
from torch.utils.data import DataLoader, DistributedSampler
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig, CLIPImageProcessor,
                          CLIPVisionModel, GenerationConfig)

from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
from xtuner.dataset.refcoco_json import RefCOCOJsonEvalDataset
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal
from xtuner.tools.utils import get_stop_criteria
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
                          PROMPT_TEMPLATE)

TORCH_DTYPE_MAP = dict(
    fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')


def merge_outputs(otuputs):
    new_outputs = [None for _ in range(dist.get_world_size())]

    assert dist.is_initialized()

    dist.all_gather_object(new_outputs, otuputs)
    new_dict = []
    for output in new_outputs:
        new_dict.extend(output)
    return new_dict


@master_only
def master_print(msg):
    print(msg)


def parse_args():
    parser = argparse.ArgumentParser(description='MMBench')
    parser.add_argument(
        'model_name_or_path', help='Hugging Face model name or path')
    parser.add_argument('--data-path', default=None, help='data path')
    parser.add_argument('--work-dir', help='the dir to save results')
    parser.add_argument('--llava', default=None, help='llava name or path')
    parser.add_argument(
        '--visual-encoder', default=None, help='visual encoder name or path')
    parser.add_argument(
        '--visual-select-layer', default=-2, help='visual select layer')
    parser.add_argument(
        '--prompt-template',
        choices=PROMPT_TEMPLATE.keys(),
        default=None,
        help='Specify a prompt template',
    )
    parser.add_argument(
        '--stop-words', nargs='+', type=str, default=[], help='Stop words')
    parser.add_argument(
        '--torch-dtype',
        default='fp16',
        choices=TORCH_DTYPE_MAP.keys(),
        help='Override the default `torch.dtype` and load the model under '
        'a specific `dtype`.',
    )
    parser.add_argument(
        '--bits',
        type=int,
        choices=[4, 8, None],
        default=None,
        help='LLM bits')
    parser.add_argument(
        '--bot-name', type=str, default='BOT', help='Name for Bot')
    parser.add_argument(
        '--offload-folder',
        default=None,
        help='The folder in which to offload the model weights (or where the '
        'model weights are already offloaded).',
    )
    parser.add_argument(
        '--max-new-tokens',
        type=int,
        default=100,
        help='Maximum number of new tokens allowed in generated text',
    )
    parser.add_argument(
        '--seed',
        type=int,
        default=0,
        help='Random seed for reproducible text generation',
    )
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher',
    )
    args = parser.parse_args()
    return args


def eval_iou(answers):

    def computeIoU(bbox1, bbox2):
        x1, y1, x2, y2 = bbox1
        x3, y3, x4, y4 = bbox2
        intersection_x1 = max(x1, x3)
        intersection_y1 = max(y1, y3)
        intersection_x2 = min(x2, x4)
        intersection_y2 = min(y2, y4)
        intersection_area = max(0,
                                intersection_x2 - intersection_x1 + 1) * max(
                                    0, intersection_y2 - intersection_y1 + 1)
        bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
        bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
        union_area = bbox1_area + bbox2_area - intersection_area
        iou = intersection_area / union_area
        return iou

    right = 0
    for answer in answers:
        bbox = answer['bbox']
        bbox = RefCOCOJsonEvalDataset.normalize_bbox(bbox, answer['height'],
                                                     answer['width'])
        answer_bbox = [int(x) for x in re.findall(r'\d+', answer['ans'])]
        if len(answer_bbox) == 4:
            iou = computeIoU(answer_bbox, bbox)
            if iou > 0.5:
                right += 1
        else:
            print('Error format sample: ', answer)
    return right / len(answers)


def build_model(args):
    rank, world_size = get_dist_info()
    # build llm
    quantization_config = None
    load_in_8bit = False
    if args.bits == 4:
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            load_in_8bit=False,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4',
        )
    elif args.bits == 8:
        load_in_8bit = True
    model_kwargs = {
        'quantization_config': quantization_config,
        'load_in_8bit': load_in_8bit,
        'device_map': rank if world_size > 1 else 'auto',
        'offload_folder': args.offload_folder,
        'trust_remote_code': True,
        'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype],
    }

    # build llm
    with LoadWoInit():
        llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
                                                   **model_kwargs)
    tokenizer = AutoTokenizer.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
        encode_special_tokens=True)
    master_print(f'Load LLM from {args.model_name_or_path}')

    llava_path = (
        snapshot_download(
            repo_id=args.llava) if not osp.isdir(args.llava) else args.llava)

    # build visual_encoder
    if 'visual_encoder' in os.listdir(llava_path):
        assert args.visual_encoder is None, (
            "Please don't specify the `--visual-encoder` since passed "
            '`--llava` contains a visual encoder!')
        visual_encoder_path = osp.join(llava_path, 'visual_encoder')
    else:
        assert (args.visual_encoder is not None
                ), 'Please specify the `--visual-encoder`!'  # noqa: E501
        visual_encoder_path = args.visual_encoder
    with LoadWoInit():
        visual_encoder = CLIPVisionModel.from_pretrained(
            visual_encoder_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
        image_processor = CLIPImageProcessor.from_pretrained(
            visual_encoder_path)
    master_print(f'Load visual_encoder from {visual_encoder_path}')

    # load adapter
    if 'llm_adapter' in os.listdir(llava_path):
        adapter_path = osp.join(llava_path, 'llm_adapter')

        with LoadWoInit():
            llm = PeftModel.from_pretrained(
                llm, adapter_path, offload_folder=args.offload_folder)

        master_print(f'Load LLM adapter from {args.llava}')

    if 'visual_encoder_adapter' in os.listdir(llava_path):
        adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
        visual_encoder = PeftModel.from_pretrained(
            visual_encoder, adapter_path, offload_folder=args.offload_folder)
        master_print(f'Load visual_encoder adapter from {args.llava}')

    # build projector
    projector_path = osp.join(llava_path, 'projector')
    with LoadWoInit():
        projector = AutoModel.from_pretrained(
            projector_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
    master_print(f'Load projector from {args.llava}')

    projector.cuda()
    projector.eval()

    visual_encoder.cuda()
    visual_encoder.eval()

    llm.eval()
    return llm, visual_encoder, projector, tokenizer, image_processor


def generate(
    llm,
    visual_encoder,
    projector,
    tokenizer,
    samples,
    visual_select_layer,
):
    gen_config = GenerationConfig(
        max_new_tokens=100,
        do_sample=False,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=(tokenizer.pad_token_id if tokenizer.pad_token_id
                      is not None else tokenizer.eos_token_id),
    )
    stop_criteria = get_stop_criteria(tokenizer=tokenizer, stop_words=['</s>'])

    device = next(llm.parameters()).device
    # prepare inputs
    inputs = samples['conversation'][0]['input'][0]
    chunk_encode = []
    for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
        if idx == 0:
            cur_encode = tokenizer.encode(chunk)
        else:
            cur_encode = tokenizer.encode(chunk, add_special_tokens=False)
        chunk_encode.append(cur_encode)
    assert len(chunk_encode) == 2
    ids = []
    for idx, cur_chunk_encode in enumerate(chunk_encode):
        ids.extend(cur_chunk_encode)
        if idx != len(chunk_encode) - 1:
            ids.append(IMAGE_TOKEN_INDEX)
    ids = torch.tensor(ids).cuda().unsqueeze(0)

    visual_outputs = visual_encoder(
        samples['pixel_values'].to(device), output_hidden_states=True)
    pixel_values = projector(
        visual_outputs.hidden_states[visual_select_layer][:, 1:])
    samples['pixel_values'] = pixel_values
    samples['input_ids'] = ids
    datax = prepare_inputs_labels_for_multimodal(
        llm=llm.to(device),
        input_ids=samples['input_ids'].to(device),
        pixel_values=samples['pixel_values'].to(device),
    )

    # generation
    generation = llm.generate(
        **datax,
        generation_config=gen_config,
        streamer=None,
        bos_token_id=tokenizer.bos_token_id,
        stopping_criteria=stop_criteria,
    )
    answer = tokenizer.decode(generation[0])
    return {
        'ans': answer,
        'id': samples['id'][0],
        'bbox': torch.tensor(samples['bbox']).tolist(),
        'height': samples['height'],
        'width': samples['width'],
    }


@torch.no_grad()
def main():
    # init
    args = parse_args()
    if args.launcher != 'none':
        set_multi_processing(distributed=True)
        init_dist(args.launcher)

        rank, world_size = get_dist_info()
        torch.cuda.set_device(rank)
    else:
        rank = 0
        world_size = 1
    print(f'Rank: {rank} / World size: {world_size}')

    # build_model
    llm, visual_encoder, projector, tokenizer, image_processor = build_model(
        args)

    # dataset
    dataset = RefCOCOJsonEvalDataset(
        data_path=args.data_path,
        image_folder='data/llava_data/llava_images/',
        tokenizer=tokenizer,
        image_processor=image_processor,
        max_dataset_length=None,
        dataset_map_fn=llava_map_fn,
        template_map_fn=dict(
            type=template_map_fn_factory, template=PROMPT_TEMPLATE.vicuna),
        max_length=2048,
        pad_image_to_square=False,
    )
    loader = DataLoader(
        dataset,
        batch_size=1,
        shuffle=False,
        sampler=DistributedSampler(dataset, shuffle=False, seed=0),
    )
    loader.sampler.set_epoch(0)

    answers = []
    for i, data in tqdm.tqdm(enumerate(loader), desc=f'Rank {rank}'):
        answer = generate(
            llm,
            visual_encoder,
            projector,
            tokenizer,
            data,
            args.visual_select_layer,
        )
        answers.append(answer)

    merged_outputs = merge_outputs(answers)
    acc = eval_iou(merged_outputs)
    master_print(f'Acc: {acc}')


if __name__ == '__main__':
    main()