Spaces:
Runtime error
Runtime error
File size: 11,736 Bytes
476ac07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import re
import torch
import tqdm
from huggingface_hub import snapshot_download
from mmengine.dist import get_dist_info, init_dist, master_only
from mmengine.utils.dl_utils import set_multi_processing
from peft import PeftModel
from torch import distributed as dist
from torch.utils.data import DataLoader, DistributedSampler
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, CLIPImageProcessor,
CLIPVisionModel, GenerationConfig)
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
from xtuner.dataset.refcoco_json import RefCOCOJsonEvalDataset
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal
from xtuner.tools.utils import get_stop_criteria
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
PROMPT_TEMPLATE)
TORCH_DTYPE_MAP = dict(
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
def merge_outputs(otuputs):
new_outputs = [None for _ in range(dist.get_world_size())]
assert dist.is_initialized()
dist.all_gather_object(new_outputs, otuputs)
new_dict = []
for output in new_outputs:
new_dict.extend(output)
return new_dict
@master_only
def master_print(msg):
print(msg)
def parse_args():
parser = argparse.ArgumentParser(description='MMBench')
parser.add_argument(
'model_name_or_path', help='Hugging Face model name or path')
parser.add_argument('--data-path', default=None, help='data path')
parser.add_argument('--work-dir', help='the dir to save results')
parser.add_argument('--llava', default=None, help='llava name or path')
parser.add_argument(
'--visual-encoder', default=None, help='visual encoder name or path')
parser.add_argument(
'--visual-select-layer', default=-2, help='visual select layer')
parser.add_argument(
'--prompt-template',
choices=PROMPT_TEMPLATE.keys(),
default=None,
help='Specify a prompt template',
)
parser.add_argument(
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
parser.add_argument(
'--torch-dtype',
default='fp16',
choices=TORCH_DTYPE_MAP.keys(),
help='Override the default `torch.dtype` and load the model under '
'a specific `dtype`.',
)
parser.add_argument(
'--bits',
type=int,
choices=[4, 8, None],
default=None,
help='LLM bits')
parser.add_argument(
'--bot-name', type=str, default='BOT', help='Name for Bot')
parser.add_argument(
'--offload-folder',
default=None,
help='The folder in which to offload the model weights (or where the '
'model weights are already offloaded).',
)
parser.add_argument(
'--max-new-tokens',
type=int,
default=100,
help='Maximum number of new tokens allowed in generated text',
)
parser.add_argument(
'--seed',
type=int,
default=0,
help='Random seed for reproducible text generation',
)
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher',
)
args = parser.parse_args()
return args
def eval_iou(answers):
def computeIoU(bbox1, bbox2):
x1, y1, x2, y2 = bbox1
x3, y3, x4, y4 = bbox2
intersection_x1 = max(x1, x3)
intersection_y1 = max(y1, y3)
intersection_x2 = min(x2, x4)
intersection_y2 = min(y2, y4)
intersection_area = max(0,
intersection_x2 - intersection_x1 + 1) * max(
0, intersection_y2 - intersection_y1 + 1)
bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
union_area = bbox1_area + bbox2_area - intersection_area
iou = intersection_area / union_area
return iou
right = 0
for answer in answers:
bbox = answer['bbox']
bbox = RefCOCOJsonEvalDataset.normalize_bbox(bbox, answer['height'],
answer['width'])
answer_bbox = [int(x) for x in re.findall(r'\d+', answer['ans'])]
if len(answer_bbox) == 4:
iou = computeIoU(answer_bbox, bbox)
if iou > 0.5:
right += 1
else:
print('Error format sample: ', answer)
return right / len(answers)
def build_model(args):
rank, world_size = get_dist_info()
# build llm
quantization_config = None
load_in_8bit = False
if args.bits == 4:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4',
)
elif args.bits == 8:
load_in_8bit = True
model_kwargs = {
'quantization_config': quantization_config,
'load_in_8bit': load_in_8bit,
'device_map': rank if world_size > 1 else 'auto',
'offload_folder': args.offload_folder,
'trust_remote_code': True,
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype],
}
# build llm
with LoadWoInit():
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
**model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
encode_special_tokens=True)
master_print(f'Load LLM from {args.model_name_or_path}')
llava_path = (
snapshot_download(
repo_id=args.llava) if not osp.isdir(args.llava) else args.llava)
# build visual_encoder
if 'visual_encoder' in os.listdir(llava_path):
assert args.visual_encoder is None, (
"Please don't specify the `--visual-encoder` since passed "
'`--llava` contains a visual encoder!')
visual_encoder_path = osp.join(llava_path, 'visual_encoder')
else:
assert (args.visual_encoder is not None
), 'Please specify the `--visual-encoder`!' # noqa: E501
visual_encoder_path = args.visual_encoder
with LoadWoInit():
visual_encoder = CLIPVisionModel.from_pretrained(
visual_encoder_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
image_processor = CLIPImageProcessor.from_pretrained(
visual_encoder_path)
master_print(f'Load visual_encoder from {visual_encoder_path}')
# load adapter
if 'llm_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'llm_adapter')
with LoadWoInit():
llm = PeftModel.from_pretrained(
llm, adapter_path, offload_folder=args.offload_folder)
master_print(f'Load LLM adapter from {args.llava}')
if 'visual_encoder_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
visual_encoder = PeftModel.from_pretrained(
visual_encoder, adapter_path, offload_folder=args.offload_folder)
master_print(f'Load visual_encoder adapter from {args.llava}')
# build projector
projector_path = osp.join(llava_path, 'projector')
with LoadWoInit():
projector = AutoModel.from_pretrained(
projector_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
master_print(f'Load projector from {args.llava}')
projector.cuda()
projector.eval()
visual_encoder.cuda()
visual_encoder.eval()
llm.eval()
return llm, visual_encoder, projector, tokenizer, image_processor
def generate(
llm,
visual_encoder,
projector,
tokenizer,
samples,
visual_select_layer,
):
gen_config = GenerationConfig(
max_new_tokens=100,
do_sample=False,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=(tokenizer.pad_token_id if tokenizer.pad_token_id
is not None else tokenizer.eos_token_id),
)
stop_criteria = get_stop_criteria(tokenizer=tokenizer, stop_words=['</s>'])
device = next(llm.parameters()).device
# prepare inputs
inputs = samples['conversation'][0]['input'][0]
chunk_encode = []
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
if idx == 0:
cur_encode = tokenizer.encode(chunk)
else:
cur_encode = tokenizer.encode(chunk, add_special_tokens=False)
chunk_encode.append(cur_encode)
assert len(chunk_encode) == 2
ids = []
for idx, cur_chunk_encode in enumerate(chunk_encode):
ids.extend(cur_chunk_encode)
if idx != len(chunk_encode) - 1:
ids.append(IMAGE_TOKEN_INDEX)
ids = torch.tensor(ids).cuda().unsqueeze(0)
visual_outputs = visual_encoder(
samples['pixel_values'].to(device), output_hidden_states=True)
pixel_values = projector(
visual_outputs.hidden_states[visual_select_layer][:, 1:])
samples['pixel_values'] = pixel_values
samples['input_ids'] = ids
datax = prepare_inputs_labels_for_multimodal(
llm=llm.to(device),
input_ids=samples['input_ids'].to(device),
pixel_values=samples['pixel_values'].to(device),
)
# generation
generation = llm.generate(
**datax,
generation_config=gen_config,
streamer=None,
bos_token_id=tokenizer.bos_token_id,
stopping_criteria=stop_criteria,
)
answer = tokenizer.decode(generation[0])
return {
'ans': answer,
'id': samples['id'][0],
'bbox': torch.tensor(samples['bbox']).tolist(),
'height': samples['height'],
'width': samples['width'],
}
@torch.no_grad()
def main():
# init
args = parse_args()
if args.launcher != 'none':
set_multi_processing(distributed=True)
init_dist(args.launcher)
rank, world_size = get_dist_info()
torch.cuda.set_device(rank)
else:
rank = 0
world_size = 1
print(f'Rank: {rank} / World size: {world_size}')
# build_model
llm, visual_encoder, projector, tokenizer, image_processor = build_model(
args)
# dataset
dataset = RefCOCOJsonEvalDataset(
data_path=args.data_path,
image_folder='data/llava_data/llava_images/',
tokenizer=tokenizer,
image_processor=image_processor,
max_dataset_length=None,
dataset_map_fn=llava_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=PROMPT_TEMPLATE.vicuna),
max_length=2048,
pad_image_to_square=False,
)
loader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
sampler=DistributedSampler(dataset, shuffle=False, seed=0),
)
loader.sampler.set_epoch(0)
answers = []
for i, data in tqdm.tqdm(enumerate(loader), desc=f'Rank {rank}'):
answer = generate(
llm,
visual_encoder,
projector,
tokenizer,
data,
args.visual_select_layer,
)
answers.append(answer)
merged_outputs = merge_outputs(answers)
acc = eval_iou(merged_outputs)
master_print(f'Acc: {acc}')
if __name__ == '__main__':
main()
|