Spaces:
Runtime error
Runtime error
File size: 15,126 Bytes
476ac07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import argparse
import json
import os
import os.path as osp
from functools import partial
from pathlib import Path
from typing import Dict, List
import numpy as np
from mmengine import list_dir_or_file, track_progress_rich
from transformers import AutoTokenizer
SEPCIAL_TOKENS = [
'<|plugin|>', '<|interpreter|>', '<|action_end|>', '<|action_start|>',
'<|im_end|>', '<|im_start|>'
]
CHATML_LLAMAV13_32K_TOKEN_CFG = dict(
role_cfg=dict(
system=dict(
begin=dict(
with_name='<|im_start|>system name={name}\n',
without_name='<|im_start|>system\n',
name={
'interpreter': '<|interpreter|>',
'plugin': '<|plugin|>',
}),
end='<|im_end|>\n',
loss=dict(
meta=False,
icl=False,
current=False,
prefix=False,
)),
user=dict(
begin=dict(
with_name='<|im_start|>user name={name}\n',
without_name='<|im_start|>user\n',
),
end='<|im_end|>\n',
loss=dict(
icl=False,
current=False,
prefix=False,
)),
assistant=dict(
begin=dict(
with_name='<|im_start|>assistant name={name}\n',
without_name='<|im_start|>assistant\n',
name={
'interpreter': '<|interpreter|>',
'plugin': '<|plugin|>',
}),
end='<|im_end|>\n',
loss=dict(
icl=True,
current=True,
prefix=False,
end=True,
)),
environment=dict(
begin=dict(
with_name='<|im_start|>environment name={name}\n',
without_name='<|im_start|>environment\n',
name={
'interpreter': '<|interpreter|>',
'plugin': '<|plugin|>',
}),
end='<|im_end|>\n',
loss=dict(
icl=False,
current=False,
prefix=False,
)),
tool=dict(
begin=dict(
with_name='<|action_start|>{name}\n',
name={
'interpreter': '<|interpreter|>',
'plugin': '<|plugin|>',
}),
end='<|action_end|>\n',
belong='assistant',
),
thought=dict(
begin=dict(without_name=''),
end='',
belong='assistant',
),
),
max_len=32 * 1024,
)
def chatml_format(
processed_data,
tokenizer,
role_cfg,
max_len=2048,
encode_json=True,
):
"""
```python
dict(
role='',
content='',
name='', -> Begin 扩增
type='',
)
```
```python
dict(
system=dict(
begin=dict(
with_name='<TOKENS_UNUSED_140>system name={name}\n',
without_name='<TOKENS_UNUSED_140>system\n',
name={
'interpreter': '<TOKENS_UNUSED_136>',
'plugin': '<TOKENS_UNUSED_135>',
}),
end='<TOKENS_UNUSED_139>\n',
loss=dict(
meta=False,
icl=False,
current=False,
prefix=False,
)),
user=dict(
begin=dict(
with_name='<TOKENS_UNUSED_140>user name={name}\n',
without_name='<TOKENS_UNUSED_140>user\n',
),
end='<TOKENS_UNUSED_139>\n',
loss=dict(
icl=False,
current=False,
prefix=False,
)),
assistant=dict(
begin=dict(
with_name='<TOKENS_UNUSED_140>assistant name={name}\n',
without_name='<TOKENS_UNUSED_140>assistant\n',
name={
'interpreter': '<TOKENS_UNUSED_136>',
'plugin': '<TOKENS_UNUSED_135>',
}),
end='<TOKENS_UNUSED_139>\n',
loss=dict(
icl=True,
current=True,
prefix=False,
end=True,
)),
environment=dict(
begin=dict(
with_name='<TOKENS_UNUSED_140>environment name={name}\n',
without_name='<TOKENS_UNUSED_140>environment\n',
name={
'interpreter': '<TOKENS_UNUSED_136>',
'plugin': '<TOKENS_UNUSED_135>',
}),
end='<TOKENS_UNUSED_139>\n',
loss=dict(
icl=False,
current=False,
prefix=False,
)),
tool=dict(
begin=dict(
with_name='<TOKENS_UNUSED_138>{name}\n',
name={
'interpreter': '<TOKENS_UNUSED_136>',
'plugin': '<TOKENS_UNUSED_135>',
}),
end='<TOKENS_UNUSED_137>\n',
belong='assistant',
),
thought=dict(
begin='',
end='',
belong='assistant',
),
```
"""
def format_begin(role_cfg, message):
name = message.get('name', None)
if name is not None:
begin = role_cfg['begin'].get('with_name', '')
if name in role_cfg['begin'].get('name', {}):
begin = begin.format(name=role_cfg['begin']['name'][name])
else:
begin = begin.format(name=name)
else:
begin = role_cfg['begin'].get('without_name', '')
return begin
def format_sub_role(messages: List[Dict], roles_cfg) -> List[Dict]:
new_message = list()
for message in messages:
if message['role'] in [
'assistant', 'user', 'system', 'environment'
]:
new_message.append(message)
continue
role_cfg = roles_cfg[message['role']]
begin = format_begin(role_cfg, message)
new_content = begin + message['content'] + role_cfg['end']
if role_cfg.get('fallback_role'):
new_message.append(
dict(role=role_cfg['fallback_role'], content=new_content))
elif role_cfg.get('belong'):
if new_message[-1]['role'] != role_cfg.get('belong'):
new_message.append(
dict(role=role_cfg.get('belong'), content=new_content))
else:
new_message[-1]['content'] += new_content
else:
new_message.append(
dict(role=message['role'], content=new_content))
return new_message
token_ids = []
_processed_data = format_sub_role(processed_data, role_cfg)
for dialog_item in _processed_data:
role = dialog_item['role']
content = dialog_item['content']
# TODO: is strip necessary? or use lstrip? 避免开始有\n\n的情况
# content = content.lstrip()
begin = format_begin(role_cfg[role], dialog_item)
end = role_cfg[role]['end']
begin_token = tokenizer.encode(begin, add_special_tokens=False)
if not role_cfg[role]['loss'].get('beigin', False):
begin_token = [-token_id for token_id in begin_token]
end_token = tokenizer.encode(
role_cfg[role]['end'], add_special_tokens=False)
# breakpoint()
if not role_cfg[role]['loss'].get('end', False):
end_token = [-token_id for token_id in end_token]
content_token = tokenizer.encode(
begin + content + end, add_special_tokens=False)
content_token = content_token[len(begin_token):-len(end_token)]
if dialog_item.get('loss', True):
loss_cfg = role_cfg[role]['loss']
else:
loss_cfg = dict(icl=False, current=False, meta=False)
if not loss_cfg[dialog_item.get('type', 'current')]:
content_token = [-token_id for token_id in content_token]
if begin == '':
tokens = content_token
else:
tokens = begin_token + content_token
if end != '':
tokens = tokens + end_token
token_ids += tokens
token_ids = [tokenizer.bos_token_id] + token_ids
token_ids = token_ids[:max_len]
if encode_json:
line = str.encode(json.dumps({'tokens': token_ids}) + '\n')
return line, len(token_ids)
return token_ids, len(token_ids)
def write_bin_meta_bin(path, dataset_name, filename, samples):
train_path = osp.join(path, f'train/cn/{dataset_name}')
valid_path = osp.join(path, f'valid/cn/{dataset_name}')
train_dir = Path(train_path)
valid_dir = Path(valid_path)
train_dir.mkdir(exist_ok=True, parents=True)
valid_dir.mkdir(exist_ok=True, parents=True)
train_f = open(train_dir.joinpath(f'{filename}.bin'), 'wb')
valid_f_path = valid_dir.joinpath(f'{filename}.bin')
valid_f = open(valid_f_path, 'wb')
print(train_dir)
print(valid_dir)
train_tokens = 0
valid_tokens = 0
last_train_position = 0
last_valid_position = 0
train_samples = 0
valid_samples = 0
train_meta = []
valid_meta = []
for line, token_num in samples:
train_tokens += token_num
train_f.write(line)
train_meta.append((last_train_position, token_num))
last_train_position += len(line)
train_samples += 1
if (train_samples) % 100 == 0: # ?
valid_tokens += token_num
valid_f.write(line)
valid_meta.append((last_valid_position, token_num))
last_valid_position += len(line)
valid_samples += 1
train_f.close()
valid_f.close()
np.save(open(train_dir.joinpath(f'{filename}.bin.meta'), 'wb'), train_meta)
# remove the length of `valid_samples` is less than 500
# 500 is a magic number, you can change it to any number you want
# the number must bigger the DP.
if valid_samples > 500:
np.save(
open(valid_dir.joinpath(f'{filename}.bin.meta'), 'wb'), valid_meta)
else:
print(f'{valid_f_path} is removed because the number of',
f'`valid_samples`({valid_samples}) is less than 500')
os.remove(valid_f_path)
return train_tokens, valid_tokens, train_samples, valid_samples
def tokenize_and_save(tokenizer, processed_dir, tokenized_dir):
tokenized_save_dir = osp.join(tokenized_dir, 'chatml_llamav13_32k')
data_dir = processed_dir
all_train_tokens = 0
all_valid_tokens = 0
all_train_samples = 0
all_valid_samples = 0
for filename in list_dir_or_file(data_dir, recursive=True, list_dir=False):
file_path = os.path.join(data_dir, filename)
if '/processed/' not in file_path:
continue
assert '.jsonl' in filename
# dataset name such as char_x10_chat_format
dataset_name = filename.split(os.sep)[0]
# Hardcode here to skip tokenizing the file if it already exists
# (Refactor the `write_bin_meta_bin`!).
train_f = osp.join(tokenized_save_dir, 'train', 'cn', dataset_name,
f'{osp.splitext(osp.basename(filename))[0]}.bin')
if osp.isfile(train_f):
print(f'{train_f} already exists, skip it')
continue
tokenize_fun = partial(
chatml_format,
tokenizer=tokenizer,
**CHATML_LLAMAV13_32K_TOKEN_CFG)
samples = []
with open(file_path) as f:
dataset = f.readlines()
task_num = len(dataset)
dataset = map(lambda x: (json.loads(x), ), dataset)
for sample in track_progress_rich(
tokenize_fun,
dataset,
nproc=32,
task_num=task_num,
chunksize=32,
description=f'{os.path.basename(file_path)}...'):
samples.append(sample)
train_tokens, valid_tokens, train_samples, valid_samples = write_bin_meta_bin( # noqa E501
path=tokenized_save_dir,
dataset_name=dataset_name,
samples=samples,
filename=osp.splitext(osp.basename(filename))[0])
if train_tokens is None:
print(f'{osp.splitext(osp.basename(filename))[0]} already '
'exists, skip it')
continue
print(f'train_tokens {train_tokens}', flush=True)
print(f'train_samples {train_samples}')
print(f'valid tokens {valid_tokens}')
print(f'valid_samples {valid_samples}')
all_train_tokens += train_tokens
all_valid_tokens += valid_tokens
all_train_samples += train_samples
all_valid_samples += valid_samples
print(f'all train tokens {all_train_tokens}')
print(f'all train samples {all_train_samples}')
print(f'all valid tokens {all_valid_tokens}')
print(f'all valid samples {all_valid_samples}')
def tokenizer_add_special_tokens(tokenizer):
print(f'Before adding special tokens, Vocabulary Size: {len(tokenizer)}')
for special_token in SEPCIAL_TOKENS:
if special_token not in tokenizer.get_vocab():
tokenizer.add_tokens([special_token], special_tokens=True)
print(f'After adding special tokens, Vocabulary Size: {len(tokenizer)}')
def save_new_tokenizer(tokenizer, save_dir):
tokenizer.save_pretrained(save_dir)
print(f'save new tokenizer to {save_dir}')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--processed-dir', help='The folder to save untokenized data.')
parser.add_argument(
'--tokenized-dir', help='The folder to save tokenized data.')
parser.add_argument(
'--tokenizer-path', help='The path to the hf tokenizer.')
parser.add_argument(
'--tokenizer-w-special-tokens-save-dir',
default=None,
help='We have to add special tokens to the vocabulary of '
'the given tokenizer, and save the new tokenizer to this folder.')
args = parser.parse_args()
return args
def main():
args = parse_args()
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_path, trust_remote_code=True, padding_side='right')
ori_vocab_size = len(tokenizer)
tokenizer_add_special_tokens(tokenizer)
if len(tokenizer) != ori_vocab_size:
save_new_tokenizer(tokenizer, args.tokenizer_w_special_tokens_save_dir)
tokenize_and_save(tokenizer, args.processed_dir, args.tokenized_dir)
if __name__ == '__main__':
main()
|