Spaces:
Runtime error
Runtime error
File size: 12,329 Bytes
476ac07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import io
from contextlib import contextmanager
import mmengine.fileio as fileio
from mmengine.fileio import LocalBackend, PetrelBackend, get_file_backend
def patch_func(module, fn_name_to_wrap):
backup = getattr(patch_func, '_backup', [])
fn_to_wrap = getattr(module, fn_name_to_wrap)
def wrap(fn_new):
setattr(module, fn_name_to_wrap, fn_new)
backup.append((module, fn_name_to_wrap, fn_to_wrap))
setattr(fn_new, '_fallback', fn_to_wrap)
setattr(patch_func, '_backup', backup)
return fn_new
return wrap
@contextmanager
def patch_fileio(global_vars=None):
if getattr(patch_fileio, '_patched', False):
# Only patch once, avoid error caused by patch nestly.
yield
return
import builtins
@patch_func(builtins, 'open')
def open(file, mode='r', *args, **kwargs):
backend = get_file_backend(file)
if isinstance(backend, LocalBackend):
return open._fallback(file, mode, *args, **kwargs)
if 'b' in mode:
return io.BytesIO(backend.get(file, *args, **kwargs))
else:
return io.StringIO(backend.get_text(file, *args, **kwargs))
if global_vars is not None and 'open' in global_vars:
bak_open = global_vars['open']
global_vars['open'] = builtins.open
import os
@patch_func(os.path, 'join')
def join(a, *paths):
backend = get_file_backend(
a.decode('utf-8') if isinstance(a, bytes) else a)
if isinstance(backend, LocalBackend):
return join._fallback(a, *paths)
paths = [item.lstrip('./') for item in paths if len(item) > 0]
return backend.join_path(a, *paths)
@patch_func(os.path, 'isdir')
def isdir(path):
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return isdir._fallback(path)
return backend.isdir(path)
@patch_func(os.path, 'isfile')
def isfile(path):
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return isfile._fallback(path)
return backend.isfile(path)
@patch_func(os.path, 'exists')
def exists(path):
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return exists._fallback(path)
return backend.exists(path)
@patch_func(os, 'mkdir')
def mkdir(path, *args, **kwargs):
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return mkdir._fallback(path, *args, **kwargs)
@patch_func(os, 'makedirs')
def makedirs(path, *args, **kwargs):
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return makedirs._fallback(path, *args, **kwargs)
@patch_func(os, 'listdir')
def listdir(path):
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return listdir._fallback(path)
return backend.list_dir_or_file(path)
@patch_func(os, 'chmod')
def chmod(path, *args, **kwargs):
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return chmod._fallback(path, *args, **kwargs)
@patch_func(os, 'stat')
def stat(path, *args, **kwargs):
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return stat._fallback(path, *args, **kwargs)
import glob as glob_pkg
@patch_func(glob_pkg, 'glob')
def glob(pathname, *, recursive=False):
backend = get_file_backend(pathname)
if isinstance(backend, LocalBackend):
return glob._fallback(pathname, recursive=recursive)
if pathname.endswith('*_optim_states.pt'):
import os
pathname = os.path.split(pathname)[0]
files = backend.list_dir_or_file(pathname, recursive=recursive)
files = [
os.path.join(pathname, f) for f in files
if f.endswith('_optim_states.pt')
]
elif pathname.endswith('*_model_states.pt'):
import os
pathname = os.path.split(pathname)[0]
files = backend.list_dir_or_file(pathname, recursive=recursive)
files = [
os.path.join(pathname, f) for f in files
if f.endswith('_model_states.pt')
]
elif '*' in pathname:
raise NotImplementedError
else:
files = backend.list_dir_or_file(pathname, recursive=recursive)
return files
import filecmp
@patch_func(filecmp, 'cmp')
def cmp(f1, f2, *args, **kwargs):
with fileio.get_local_path(f1) as f1, fileio.get_local_path(f2) as f2:
return cmp._fallback(f1, f2, *args, **kwargs)
import shutil
@patch_func(shutil, 'copy')
def copy(src, dst, **kwargs):
from pathlib import Path
if isinstance(src, Path):
src = str(src).replace(':/', '://')
if isinstance(dst, Path):
dst = str(dst).replace(':/', '://')
src_backend = get_file_backend(src)
dst_backend = get_file_backend(dst)
if isinstance(src_backend, LocalBackend) and isinstance(
dst_backend, LocalBackend):
return copy._fallback(src, dst, **kwargs)
elif isinstance(src_backend, LocalBackend) and isinstance(
dst_backend, PetrelBackend):
return dst_backend.copyfile_from_local(str(src), str(dst))
elif isinstance(src_backend, PetrelBackend) and isinstance(
dst_backend, LocalBackend):
return src_backend.copyfile_to_local(str(src), str(dst))
import torch
@patch_func(torch, 'load')
def load(f, *args, **kwargs):
if isinstance(f, str):
f = io.BytesIO(fileio.get(f))
return load._fallback(f, *args, **kwargs)
@patch_func(torch, 'save')
def save(obj, f, *args, **kwargs):
backend = get_file_backend(f)
if isinstance(backend, LocalBackend):
return save._fallback(obj, f, *args, **kwargs)
with io.BytesIO() as buffer:
save._fallback(obj, buffer, *args, **kwargs)
buffer.seek(0)
backend.put(buffer, f)
# from tempfile import TemporaryDirectory
# import os
# with TemporaryDirectory(dir='/dev/shm') as tmpdir:
# suffix = os.path.split(f)[-1]
# tmppath = os.path.join._fallback(tmpdir, suffix)
# from mmengine import print_log
# print_log('write to tmp dir', logger='current')
# save._fallback(obj, tmppath, *args, **kwargs)
# print_log('write to ceph', logger='current')
# with open(tmppath, 'rb') as buffer:
# backend.put(buffer, f)
from sentencepiece import SentencePieceProcessor
@patch_func(SentencePieceProcessor, 'LoadFromFile')
def LoadFromFile(cls, path):
if path:
backend = get_file_backend(path)
if isinstance(backend, LocalBackend):
return LoadFromFile._fallback(cls, path)
from tempfile import TemporaryDirectory
with TemporaryDirectory() as tmpdir:
local_path = backend.copyfile_to_local(path, tmpdir)
loaded_file = LoadFromFile._fallback(cls, local_path)
return loaded_file
else:
return LoadFromFile._fallback(cls, path)
try:
setattr(patch_fileio, '_patched', True)
yield
finally:
for patched_fn in patch_func._backup:
(module, fn_name_to_wrap, fn_to_wrap) = patched_fn
setattr(module, fn_name_to_wrap, fn_to_wrap)
if global_vars is not None and 'open' in global_vars:
global_vars['open'] = bak_open
setattr(patch_fileio, '_patched', False)
def patch_hf_auto_from_pretrained(petrel_hub):
if hasattr(patch_hf_auto_from_pretrained, '_patched'):
return
from peft import PeftModel
from transformers import (AutoConfig, AutoFeatureExtractor,
AutoImageProcessor, AutoModelForCausalLM,
AutoProcessor, AutoTokenizer,
ImageProcessingMixin, PreTrainedModel,
PreTrainedTokenizerBase, ProcessorMixin)
from transformers.models.auto.auto_factory import _BaseAutoModelClass
target_cls = list(_BaseAutoModelClass.__subclasses__())
target_cls.extend([AutoModelForCausalLM] +
AutoModelForCausalLM.__subclasses__())
target_cls.extend([AutoConfig] + AutoConfig.__subclasses__())
target_cls.extend([AutoTokenizer] + AutoTokenizer.__subclasses__())
target_cls.extend([AutoImageProcessor] +
AutoImageProcessor.__subclasses__())
target_cls.extend([AutoFeatureExtractor] +
AutoFeatureExtractor.__subclasses__())
target_cls.extend([AutoProcessor] + AutoProcessor.__subclasses__())
target_cls.extend([PreTrainedTokenizerBase] +
PreTrainedTokenizerBase.__subclasses__())
target_cls.extend([ImageProcessingMixin] +
ImageProcessingMixin.__subclasses__())
target_cls.extend([PreTrainedModel] + PreTrainedModel.__subclasses__())
target_cls.extend([ProcessorMixin] + ProcessorMixin.__subclasses__())
target_cls.extend([PeftModel] + PeftModel.__subclasses__())
import os
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
with patch_fileio():
model_path = pretrained_model_name_or_path
model_path = os.path.join(petrel_hub, model_path)
obj = cls._from_pretrained(model_path, *args, **kwargs)
return obj
for cls in set(target_cls):
if not hasattr(cls, '_from_pretrained'):
cls._from_pretrained = cls.from_pretrained
cls.from_pretrained = from_pretrained
patch_hf_auto_from_pretrained._patched = True
def patch_hf_save_pretrained():
if hasattr(patch_hf_save_pretrained, '_patched'):
return
import torch
from peft import PeftModel
from transformers import (AutoConfig, AutoTokenizer, PreTrainedModel,
PreTrainedTokenizerBase)
from transformers.models.auto.auto_factory import _BaseAutoModelClass
target_cls = []
target_cls.extend([AutoConfig] + AutoConfig.__subclasses__())
target_cls.extend([AutoTokenizer] + AutoTokenizer.__subclasses__())
target_cls.extend([PreTrainedTokenizerBase] +
PreTrainedTokenizerBase.__subclasses__())
target_cls.extend([PreTrainedModel] + PreTrainedModel.__subclasses__())
target_cls.extend([_BaseAutoModelClass] +
_BaseAutoModelClass.__subclasses__())
target_cls.extend([PeftModel] + PeftModel.__subclasses__())
def _patch_wrap(method):
def wrapped_method(self, *args, **kwargs):
with patch_fileio():
kwargs['save_function'] = torch.save
kwargs['safe_serialization'] = False
obj = method(self, *args, **kwargs)
return obj
return wrapped_method
for cls in set(target_cls):
if hasattr(cls, 'save_pretrained'):
cls.save_pretrained = _patch_wrap(cls.save_pretrained)
patch_hf_save_pretrained._patched = True
def patch_deepspeed_engine():
if hasattr(patch_deepspeed_engine, '_patched'):
return
def _copy_recovery_script(self, save_path):
import os
from shutil import copyfile
from deepspeed.utils import zero_to_fp32
from mmengine import PetrelBackend, get_file_backend
script = 'zero_to_fp32.py'
src = zero_to_fp32.__file__
dst = os.path.join(save_path, script)
backend = get_file_backend(save_path)
if isinstance(backend, PetrelBackend):
backend.copyfile_from_local(src, dst)
else:
copyfile(src, dst)
self._change_recovery_script_permissions(dst)
from deepspeed.runtime.engine import DeepSpeedEngine
DeepSpeedEngine._copy_recovery_script = _copy_recovery_script
patch_deepspeed_engine._patched = True
|