Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from functools import partial | |
from datasets import load_dataset | |
from torch.utils.data import ConcatDataset | |
from xtuner.dataset import process_hf_dataset | |
from xtuner.dataset.collate_fns import default_collate_fn | |
from xtuner.dataset.map_fns import (crime_kg_assitant_map_fn, | |
law_reference_map_fn, | |
template_map_fn_factory) | |
from xtuner.utils import PROMPT_TEMPLATE | |
def lawyer_dataset(tokenizer, | |
crime_data_file=None, | |
reference_data_file=None, | |
max_length=2048, | |
prompt_template=PROMPT_TEMPLATE.default, | |
remove_unused_columns=True, | |
pack_to_max_length=True): | |
crime_dataset = lawyer_crime_dataset( | |
tokenizer, | |
data_file=crime_data_file, | |
max_length=max_length, | |
prompt_template=prompt_template, | |
remove_unused_columns=remove_unused_columns, | |
pack_to_max_length=pack_to_max_length) | |
reference_dataset = lawyer_reference_dataset( | |
tokenizer, | |
data_file=reference_data_file, | |
max_length=max_length, | |
prompt_template=prompt_template, | |
remove_unused_columns=remove_unused_columns, | |
pack_to_max_length=pack_to_max_length) | |
dataset = ConcatDataset([crime_dataset, reference_dataset]) | |
return dataset | |
def lawyer_data_collator(return_hf_format=False): | |
return partial(default_collate_fn, return_hf_format=return_hf_format) | |
def lawyer_crime_dataset(tokenizer, | |
data_file=None, | |
max_length=2048, | |
prompt_template=PROMPT_TEMPLATE.default, | |
remove_unused_columns=True, | |
pack_to_max_length=True): | |
template_map_fn = template_map_fn_factory(template=prompt_template) | |
# Download data from https://github.com/LiuHC0428/LAW-GPT # noqa: E501 | |
if data_file is None: | |
data_file = './data/law/CrimeKgAssitant清洗后_52k.json' | |
dataset_org = load_dataset(path='json', data_files=dict(train=data_file)) | |
dataset = process_hf_dataset( | |
dataset=dataset_org, | |
tokenizer=tokenizer, | |
max_length=max_length, | |
dataset_map_fn=crime_kg_assitant_map_fn, | |
template_map_fn=template_map_fn, | |
remove_unused_columns=remove_unused_columns, | |
shuffle_before_pack=True, | |
pack_to_max_length=pack_to_max_length) | |
return dataset | |
def lawyer_crime_data_collator(return_hf_format=False): | |
return partial(default_collate_fn, return_hf_format=return_hf_format) | |
def lawyer_reference_dataset(tokenizer, | |
data_file=None, | |
max_length=2048, | |
prompt_template=PROMPT_TEMPLATE.default, | |
remove_unused_columns=True, | |
pack_to_max_length=True): | |
template_map_fn = template_map_fn_factory(template=prompt_template) | |
# Download data from https://github.com/LiuHC0428/LAW-GPT # noqa: E501 | |
if data_file is None: | |
data_file = './data/law/训练数据_带法律依据_92k.json' | |
dataset_org = load_dataset(path='json', data_files=dict(train=data_file)) | |
dataset = process_hf_dataset( | |
dataset=dataset_org, | |
tokenizer=tokenizer, | |
max_length=max_length, | |
dataset_map_fn=law_reference_map_fn, | |
template_map_fn=template_map_fn, | |
remove_unused_columns=remove_unused_columns, | |
shuffle_before_pack=True, | |
pack_to_max_length=pack_to_max_length) | |
return dataset | |
def lawyer_reference_data_collator(return_hf_format=False): | |
return partial(default_collate_fn, return_hf_format=return_hf_format) | |