File size: 5,747 Bytes
6655655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import pytorch_lightning as pl
import torch
import numpy as np
import datasets
from transformers import MaxLengthCriteria, StoppingCriteriaList
from transformers.optimization import AdamW
import itertools
# from utils import count_stats, f1_metric, pairwise_meteor
from torchmetrics.text.rouge import ROUGEScore
import torch.nn.functional as F
import torchmetrics
from torchmetrics.classification import F1Score

class SequenceClassificationModule(pl.LightningModule):
  # Instantiate the model
  def __init__(self, tokenizer, model, use_question_stance_approach=True, learning_rate=1e-3):
    super().__init__()
    self.tokenizer = tokenizer
    self.model = model
    self.learning_rate = learning_rate

    self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)
    self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)
    self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)

    self.train_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average="macro")
    self.val_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average=None)
    self.test_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average=None)
    # self.train_acc = torchmetrics.Accuracy()
    # self.val_acc = torchmetrics.Accuracy()
    # self.test_acc = torchmetrics.Accuracy()

    # self.train_f1 = F1Score(num_classes=4, average="macro")
    # self.val_f1 = F1Score(num_classes=4, average=None)
    # self.test_f1 = F1Score(num_classes=4, average=None)

    self.use_question_stance_approach = use_question_stance_approach

  
  # Do a forward pass through the model
  def forward(self, input_ids, **kwargs):
    return self.model(input_ids, **kwargs)
  
  def configure_optimizers(self):
    optimizer = AdamW(self.parameters(), lr = self.learning_rate)
    return optimizer

  def training_step(self, batch, batch_idx):
    x, x_mask, y = batch

    outputs = self(x, attention_mask=x_mask, labels=y)
    logits = outputs.logits
    loss = outputs.loss

    #cross_entropy = torch.nn.CrossEntropyLoss()
    #loss = cross_entropy(logits, y)
    
    preds = torch.argmax(logits, axis=1)

    self.log("train_loss", loss)

    return {'loss': loss}

  def validation_step(self, batch, batch_idx):
    x, x_mask, y = batch

    outputs = self(x, attention_mask=x_mask, labels=y)
    logits = outputs.logits
    loss = outputs.loss

    preds = torch.argmax(logits, axis=1)

    if not self.use_question_stance_approach:
      self.val_acc(preds, y)
      self.log('val_acc_step', self.val_acc)

      self.val_f1(preds, y)      
      self.log("val_loss", loss)

    return {'val_loss':loss, "src": x, "pred": preds, "target": y}

  def validation_epoch_end(self, outs):
    if self.use_question_stance_approach:
      self.handle_end_of_epoch_scoring(outs, self.val_acc, self.val_f1)
    
    self.log('val_acc_epoch', self.val_acc)

    f1 = self.val_f1.compute()
    self.val_f1.reset()

    self.log('val_f1_epoch', torch.mean(f1))

    class_names = ["supported", "refuted", "nei", "conflicting"]
    for i, c_name in enumerate(class_names):
      self.log("val_f1_" + c_name, f1[i])


  def test_step(self, batch, batch_idx):
    x, x_mask, y = batch
    
    outputs = self(x, attention_mask=x_mask)
    logits = outputs.logits

    preds = torch.argmax(logits, axis=1)
    
    if not self.use_question_stance_approach:
      self.test_acc(preds, y)      
      self.log('test_acc_step', self.test_acc)
      self.test_f1(preds, y)      

    return {"src": x, "pred": preds, "target": y}

  def test_epoch_end(self, outs):
    if self.use_question_stance_approach:
      self.handle_end_of_epoch_scoring(outs, self.test_acc, self.test_f1)
    
    self.log('test_acc_epoch', self.test_acc)

    f1 = self.test_f1.compute()
    self.test_f1.reset()
    self.log('test_f1_epoch', torch.mean(f1))

    class_names = ["supported", "refuted", "nei", "conflicting"]
    for i, c_name in enumerate(class_names):
      self.log("test_f1_" + c_name, f1[i])

  def handle_end_of_epoch_scoring(self, outputs, acc_scorer, f1_scorer):
      gold_labels = {}
      question_support = {}
      for out in outputs:
        srcs = out['src']
        preds = out['pred']
        tgts = out['target']

        tokens = self.tokenizer.batch_decode(
          srcs, 
          skip_special_tokens=True, 
          clean_up_tokenization_spaces=True
        )

        for src, pred, tgt in zip(tokens, preds, tgts):
          claim_id = src.split("[ question ]")[0]

          if claim_id not in gold_labels:
            gold_labels[claim_id] = tgt
            question_support[claim_id] = []

          question_support[claim_id].append(pred)

      for k,gold_label in gold_labels.items():
        support = question_support[k]

        has_unansw = False
        has_true = False
        has_false = False

        for v in support:
          if v == 0:
            has_true = True
          if v == 1:
            has_false = True
          if v == 2 or v == 3: # TODO very ugly hack -- we cant have different numbers of labels for train and test so we do this
            has_unansw = True

        if has_unansw:
          answer = 2
        elif has_true and not has_false:
          answer = 0
        elif has_false and not has_true:
          answer = 1
        elif has_true and has_false:
          answer = 3


        # TODO this is very hacky and wont work if the device is literally anything other than cuda:0
        acc_scorer(torch.as_tensor([answer]).to("cuda:0"), torch.as_tensor([gold_label]).to("cuda:0"))    
        f1_scorer(torch.as_tensor([answer]).to("cuda:0"), torch.as_tensor([gold_label]).to("cuda:0"))