zhenyundeng
add files
e62781a
#!/usr/bin/env python3
# Copyright 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""DrQA reader utilities."""
import json
import time
import logging
import string
import regex as re
from collections import Counter
from .data import Dictionary
logger = logging.getLogger(__name__)
# ------------------------------------------------------------------------------
# Data loading
# ------------------------------------------------------------------------------
def load_data(args, filename, skip_no_answer=False):
"""Load examples from preprocessed file.
One example per line, JSON encoded.
"""
# Load JSON lines
with open(filename) as f:
examples = [json.loads(line) for line in f]
# Make case insensitive?
if args.uncased_question or args.uncased_doc:
for ex in examples:
if args.uncased_question:
ex['question'] = [w.lower() for w in ex['question']]
if args.uncased_doc:
ex['document'] = [w.lower() for w in ex['document']]
# Skip unparsed (start/end) examples
if skip_no_answer:
examples = [ex for ex in examples if len(ex['answers']) > 0]
return examples
def load_text(filename):
"""Load the paragraphs only of a SQuAD dataset. Store as qid -> text."""
# Load JSON file
with open(filename) as f:
examples = json.load(f)['data']
texts = {}
for article in examples:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
texts[qa['id']] = paragraph['context']
return texts
def load_answers(filename):
"""Load the answers only of a SQuAD dataset. Store as qid -> [answers]."""
# Load JSON file
with open(filename) as f:
examples = json.load(f)['data']
ans = {}
for article in examples:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
ans[qa['id']] = list(map(lambda x: x['text'], qa['answers']))
return ans
# ------------------------------------------------------------------------------
# Dictionary building
# ------------------------------------------------------------------------------
def index_embedding_words(embedding_file):
"""Put all the words in embedding_file into a set."""
words = set()
with open(embedding_file) as f:
for line in f:
w = Dictionary.normalize(line.rstrip().split(' ')[0])
words.add(w)
return words
def load_words(args, examples):
"""Iterate and index all the words in examples (documents + questions)."""
def _insert(iterable):
for w in iterable:
w = Dictionary.normalize(w)
if valid_words and w not in valid_words:
continue
words.add(w)
if args.restrict_vocab and args.embedding_file:
logger.info('Restricting to words in %s' % args.embedding_file)
valid_words = index_embedding_words(args.embedding_file)
logger.info('Num words in set = %d' % len(valid_words))
else:
valid_words = None
words = set()
for ex in examples:
_insert(ex['question'])
_insert(ex['document'])
return words
def build_word_dict(args, examples):
"""Return a dictionary from question and document words in
provided examples.
"""
word_dict = Dictionary()
for w in load_words(args, examples):
word_dict.add(w)
return word_dict
def top_question_words(args, examples, word_dict):
"""Count and return the most common question words in provided examples."""
word_count = Counter()
for ex in examples:
for w in ex['question']:
w = Dictionary.normalize(w)
if w in word_dict:
word_count.update([w])
return word_count.most_common(args.tune_partial)
def build_feature_dict(args, examples):
"""Index features (one hot) from fields in examples and options."""
def _insert(feature):
if feature not in feature_dict:
feature_dict[feature] = len(feature_dict)
feature_dict = {}
# Exact match features
if args.use_in_question:
_insert('in_question')
_insert('in_question_uncased')
if args.use_lemma:
_insert('in_question_lemma')
# Part of speech tag features
if args.use_pos:
for ex in examples:
for w in ex['pos']:
_insert('pos=%s' % w)
# Named entity tag features
if args.use_ner:
for ex in examples:
for w in ex['ner']:
_insert('ner=%s' % w)
# Term frequency feature
if args.use_tf:
_insert('tf')
return feature_dict
# ------------------------------------------------------------------------------
# Evaluation. Follows official evalutation script for v1.1 of the SQuAD dataset.
# ------------------------------------------------------------------------------
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
"""Compute the geometric mean of precision and recall for answer tokens."""
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
"""Check if the prediction is a (soft) exact match with the ground truth."""
return normalize_answer(prediction) == normalize_answer(ground_truth)
def regex_match_score(prediction, pattern):
"""Check if the prediction matches the given regular expression."""
try:
compiled = re.compile(
pattern,
flags=re.IGNORECASE + re.UNICODE + re.MULTILINE
)
except BaseException:
logger.warn('Regular expression failed to compile: %s' % pattern)
return False
return compiled.match(prediction) is not None
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
"""Given a prediction and multiple valid answers, return the score of
the best prediction-answer_n pair given a metric function.
"""
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
# ------------------------------------------------------------------------------
# Utility classes
# ------------------------------------------------------------------------------
class AverageMeter(object):
"""Computes and stores the average and current value."""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Timer(object):
"""Computes elapsed time."""
def __init__(self):
self.running = True
self.total = 0
self.start = time.time()
def reset(self):
self.running = True
self.total = 0
self.start = time.time()
return self
def resume(self):
if not self.running:
self.running = True
self.start = time.time()
return self
def stop(self):
if self.running:
self.running = False
self.total += time.time() - self.start
return self
def time(self):
if self.running:
return self.total + time.time() - self.start
return self.total