Spaces:
Build error
Build error
zhenyundeng
commited on
Commit
·
8c5fc49
1
Parent(s):
0fa98b8
upadte app.py
Browse files
app.py
CHANGED
@@ -99,7 +99,7 @@ if torch.cuda.is_available():
|
|
99 |
|
100 |
# question generation
|
101 |
qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
|
102 |
-
qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16)
|
103 |
# qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16).to(device)
|
104 |
# qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
|
105 |
# qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16).to(device)
|
@@ -557,7 +557,7 @@ def get_google_search_results(api_key, search_engine_id, google_search, sort_dat
|
|
557 |
return search_results
|
558 |
|
559 |
|
560 |
-
@spaces.GPU
|
561 |
def averitec_search(claim, generate_question, speaker="they", check_date="2024-07-01", n_pages=1): # n_pages=3
|
562 |
# default config
|
563 |
api_key = os.environ["GOOGLE_API_KEY"]
|
@@ -688,15 +688,15 @@ def generate_step2_reference_corpus(reference_file):
|
|
688 |
return tokenized_corpus, prompt_corpus
|
689 |
|
690 |
@spaces.GPU
|
691 |
-
def decorate_with_questions(claim, retrieve_evidence, top_k=
|
692 |
#
|
693 |
reference_file = "averitec/data/train.json"
|
694 |
tokenized_corpus, prompt_corpus = generate_step2_reference_corpus(reference_file)
|
695 |
prompt_bm25 = BM25Okapi(tokenized_corpus)
|
696 |
|
697 |
# Define the bloom model:
|
698 |
-
accelerator = Accelerator()
|
699 |
-
accel_device = accelerator.device
|
700 |
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
701 |
# tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
|
702 |
# model = BloomForCausalLM.from_pretrained(
|
|
|
99 |
|
100 |
# question generation
|
101 |
qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
|
102 |
+
qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16).to('cuda')
|
103 |
# qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16).to(device)
|
104 |
# qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
|
105 |
# qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16).to(device)
|
|
|
557 |
return search_results
|
558 |
|
559 |
|
560 |
+
# @spaces.GPU
|
561 |
def averitec_search(claim, generate_question, speaker="they", check_date="2024-07-01", n_pages=1): # n_pages=3
|
562 |
# default config
|
563 |
api_key = os.environ["GOOGLE_API_KEY"]
|
|
|
688 |
return tokenized_corpus, prompt_corpus
|
689 |
|
690 |
@spaces.GPU
|
691 |
+
def decorate_with_questions(claim, retrieve_evidence, top_k=3): # top_k=5, 10, 100
|
692 |
#
|
693 |
reference_file = "averitec/data/train.json"
|
694 |
tokenized_corpus, prompt_corpus = generate_step2_reference_corpus(reference_file)
|
695 |
prompt_bm25 = BM25Okapi(tokenized_corpus)
|
696 |
|
697 |
# Define the bloom model:
|
698 |
+
# accelerator = Accelerator()
|
699 |
+
# accel_device = accelerator.device
|
700 |
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
701 |
# tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
|
702 |
# model = BloomForCausalLM.from_pretrained(
|