Spaces:
Runtime error
Runtime error
File size: 10,837 Bytes
78ab311 1f418ff 78ab311 1f418ff 78ab311 51946d3 1f418ff 78ab311 1f418ff 72075ba 78ab311 72075ba 1f418ff 72075ba 1f418ff 78ab311 1f418ff 78ab311 1f418ff 78ab311 9d27c6d 8786cee 9d27c6d 1f418ff 4ac0a25 1f418ff 9d27c6d 1f418ff 9d27c6d 1f418ff 3555a61 9d27c6d 78ab311 1f418ff 78ab311 1f418ff 3555a61 72075ba 1f418ff 3555a61 1f418ff 3555a61 1f418ff 3555a61 1f418ff 3555a61 1f418ff 72075ba 1f418ff 78ab311 484131e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
import os
import cv2
import torch
import gradio as gr
from estimator.models.patchfusion import PatchFusion
from gradio_imageslider import ImageSlider
from torchvision import transforms
import numpy as np
import torch.nn.functional as F
from PIL import Image
import tempfile
# import spaces
import matplotlib
from huggingface_hub import hf_hub_download
import copy
from zoedepth.models.zoedepth import ZoeDepth
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = 'Zhyever/patchfusion_depth_anything_vitl14'
# 'Zhyever/patchfusion_depth_anything_vits14',
# 'Zhyever/patchfusion_depth_anything_vitb14',
# 'Zhyever/patchfusion_depth_anything_vitl14',
# 'Zhyever/patchfusion_zoedepth'
model = PatchFusion.from_pretrained(model_name).to(DEVICE).eval()
pf_ckp = hf_hub_download(repo_id="Zhyever/PatchFusion", filename="DepthAnything_vitl.pt")
depth_anything_base = ZoeDepth.build(**model.config.coarse_branch)
depth_anything_base.load_state_dict(torch.load(pf_ckp, map_location='cpu')['model'])
depth_anything_base = depth_anything_base.to(DEVICE).eval()
# @spaces.GPU
@torch.no_grad()
def predict_depth(model, image_lr, image_hr, mode, patch_number, resolution_h, resolution_w, patch_split_number_h, patch_split_number_w):
process_num = 4
tile_cfg = dict()
tile_cfg['image_raw_shape'] = (resolution_h, resolution_w)
tile_cfg['patch_split_num'] = (patch_split_number_h, patch_split_number_w)
if mode == 'r':
mode = mode + str(patch_number)
result, log_dict = model(mode='infer', cai_mode=mode, process_num=process_num, image_lr=image_lr, image_hr=image_hr, tile_cfg=tile_cfg)
return result
# def colorize_depth(depth):
# depth = (depth - depth.min()) / (depth.max() - depth.min())
# depth = (1 - depth) * 255.0
# depth = depth.astype(np.uint8)
# colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
# return colored_depth
def colorize_depth(depth_map, min_depth=0, max_depth=0, cmap='Spectral'):
"""
Colorize depth maps.
"""
percentile = 0.03
# percentile = 5
min_depth = np.percentile(depth_map, percentile)
max_depth = np.percentile(depth_map, 100 - percentile)
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().clone().squeeze().numpy()
elif isinstance(depth_map, np.ndarray):
depth = depth_map.copy().squeeze()
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# colorize
cm = matplotlib.colormaps[cmap]
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
img_colored_np = cm(depth, bytes=False)[:,:,:,0:3] # value from 0 to 1
# img_colored_np = np.rollaxis(img_colored_np, 3, 1)
img_colored_np = img_colored_np * 255.0
img_colored_np = img_colored_np.astype(np.uint8)
img_colored_np = img_colored_np[0, :, :, :]
return img_colored_np
def gallery_fn(image, coarse, fine, **kwargs):
return [(coarse, fine), image]
title = "# PatchFusion"
description = """Official demo for **PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation**.
PatchFusion is a deep learning model for high-resolution metric depth estimation from a single image.
Please refer to our [project webpage](https://zhyever.github.io/patchfusion), [paper](https://arxiv.org/abs/2312.02284) or [github](https://github.com/zhyever/PatchFusion) for more details.
We use [Depth-Anything vitl14](https://github.com/LiheYoung/Depth-Anything) as the default model in this demo.
You can slide the output to compare the depth prediction from the base low-resolution model and PatchFusion.
"""
markdown = """
PatchFusion works on default 4k (2160x3840) resolution. All input images will be resized to 4k before passing through PatchFusion as default. Users can increase the processing resolution in the advanced option (resolution_h, resolution_w).
PatchFusion has three modes: m1, m2, and rn. They are corresponding to the different tiling strategies P16, P49, and Rn in our paper. We rename it for general usage. Please refer to the documentation provided in [github inference instruction](https://github.com/zhyever/PatchFusion/docs/user_infer.md).
We provide customized tiling variations for m1 and m2. Users can adjust the patch split number in the advanced option (patch_split_number_h, patch_split_number_w) (default: 4x4 splitting).
The output depth map is resized to the original image resolution. Download for better visualization quality. 16-Bit Raw Depth = (pred_depth * 256).to(uint16).
"""
image_resizer = model.resizer
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
gr.Markdown(markdown)
prediction_coarse = gr.File(
visible=False,
)
prediction_fine = gr.File(
visible=False,
)
with gr.Row():
with gr.Accordion("Advanced options", open=False):
resolution_h = gr.Slider(label="Proccessing resolution height (Default 4K, 2160)", minimum=256, maximum=2700, value=2160, step=10)
resolution_w = gr.Slider(label="Proccessing resolution width (Default 4K, 3840)", minimum=256, maximum=4800, value=3840, step=10)
mode = gr.Radio(["m2", "r"], label="Tiling mode", info="We recommand using M2 for fast evaluation and R with 256 patches for best visualization results, respectively", elem_id='mode', value='m2')
# mode = gr.Radio(["m1", "m2", "r"], label="Tiling mode", info="We recommand using M2 for fast evaluation and R with 256 patches for best visualization results, respectively", elem_id='mode', value='m1')
patch_number = gr.Slider(1, 256, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
patch_split_number_h = gr.Slider(label="Patch split number of height dimension (Default 4)", minimum=2, maximum=8, value=4, step=1)
patch_split_number_w = gr.Slider(label="Patch split number of width dimension (Default 4)", minimum=2, maximum=8, value=4, step=1)
color_map = gr.Radio(["turbo_r", "magma_r", "Spectral", "gray"], label="Colormap used to render depth map", elem_id='mode', value='turbo_r')
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
with gr.Row():
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
raw_file = gr.File(label="16-Bit Raw Depth, Multiplier:256")
submit = gr.Button("Submit")
def on_submit(image, mode, patch_number, resolution_h, resolution_w, patch_split_number_h, patch_split_number_w, color_map):
h, w = image.shape[:2]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
image = transforms.ToTensor()(np.asarray(image)) # raw image
image_lr = image_resizer(image.unsqueeze(dim=0)).float().to(DEVICE)
# make sure the resolution and patch number are valid
# adjust the relationship
if resolution_h % (2 * patch_split_number_h) != 0:
resolution_h = resolution_h // (2 * patch_split_number_h) * (2 * patch_split_number_h)
if resolution_w % (2 * patch_split_number_w) != 0:
resolution_w = resolution_w // (2 * patch_split_number_w) * (2 * patch_split_number_w)
image_hr = F.interpolate(image.unsqueeze(dim=0), (resolution_h, resolution_w), mode='bicubic', align_corners=True).float().to(DEVICE)
pf_prediction = predict_depth(model, image_lr, image_hr, mode, patch_number, resolution_h, resolution_w, patch_split_number_h, patch_split_number_w)
coarse_prediction = depth_anything_base(image_lr)['metric_depth']
pf_prediction = F.interpolate(pf_prediction, (h, w))[0, 0].detach().cpu().numpy()
coarse_prediction = F.interpolate(coarse_prediction, (h, w))[0, 0].detach().cpu().numpy()
pf_prediction_colored = colorize_depth(pf_prediction, cmap=color_map)
coarse_predictioncolored = colorize_depth(coarse_prediction, cmap=color_map)
raw_depth = Image.fromarray((pf_prediction*256).astype('uint16'))
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp.name)
return [(coarse_predictioncolored, pf_prediction_colored), tmp.name]
ips = [input_image, mode, patch_number, resolution_h, resolution_w, patch_split_number_h, patch_split_number_w, color_map]
submit.click(on_submit, inputs=ips, outputs=[depth_image_slider, raw_file])
inputs = [input_image, prediction_coarse, prediction_fine]
outputs = [depth_image_slider, input_image,]
examples = gr.Examples(
inputs=inputs,
outputs=outputs,
examples=[
[
"examples/example_1.jpeg",
"examples/example_1_coarse.png",
"examples/example_1_fine.png",
],
[
"examples/example_2.jpeg",
"examples/example_2_coarse.png",
"examples/example_2_fine.png",
],
[
"examples/example_3.jpeg",
"examples/example_3_coarse.png",
"examples/example_3_fine.png",
]],
cache_examples=True,
fn=gallery_fn,)
if __name__ == '__main__':
demo.queue().launch(share=True, show_error=True) |