File size: 10,837 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f418ff
 
78ab311
 
1f418ff
 
 
78ab311
 
51946d3
 
1f418ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78ab311
1f418ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72075ba
 
 
78ab311
72075ba
1f418ff
72075ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f418ff
78ab311
1f418ff
 
 
 
 
78ab311
1f418ff
 
78ab311
 
 
 
 
9d27c6d
8786cee
 
 
 
9d27c6d
1f418ff
4ac0a25
1f418ff
 
9d27c6d
1f418ff
9d27c6d
1f418ff
3555a61
 
9d27c6d
78ab311
1f418ff
 
 
78ab311
 
1f418ff
 
 
 
 
 
 
 
 
3555a61
72075ba
 
1f418ff
 
 
 
 
 
 
3555a61
1f418ff
3555a61
 
1f418ff
 
3555a61
1f418ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3555a61
1f418ff
 
 
 
 
 
 
 
72075ba
1f418ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78ab311
 
484131e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Zhenyu Li

import os
import cv2
import torch
import gradio as gr
from estimator.models.patchfusion import PatchFusion
from gradio_imageslider import ImageSlider
from torchvision import transforms
import numpy as np
import torch.nn.functional as F
from PIL import Image
import tempfile
# import spaces
import matplotlib
from huggingface_hub import hf_hub_download 
import copy
from zoedepth.models.zoedepth import ZoeDepth

css = """
#img-display-container {
    max-height: 100vh;
    }
#img-display-input {
    max-height: 80vh;
    }
#img-display-output {
    max-height: 80vh;
    }
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = 'Zhyever/patchfusion_depth_anything_vitl14'

# 'Zhyever/patchfusion_depth_anything_vits14', 
# 'Zhyever/patchfusion_depth_anything_vitb14', 
# 'Zhyever/patchfusion_depth_anything_vitl14', 
# 'Zhyever/patchfusion_zoedepth'

model = PatchFusion.from_pretrained(model_name).to(DEVICE).eval()

pf_ckp = hf_hub_download(repo_id="Zhyever/PatchFusion", filename="DepthAnything_vitl.pt")
depth_anything_base = ZoeDepth.build(**model.config.coarse_branch)
depth_anything_base.load_state_dict(torch.load(pf_ckp, map_location='cpu')['model'])
depth_anything_base = depth_anything_base.to(DEVICE).eval()

# @spaces.GPU
@torch.no_grad()
def predict_depth(model, image_lr, image_hr, mode, patch_number, resolution_h, resolution_w, patch_split_number_h, patch_split_number_w):
    process_num = 4
    tile_cfg = dict()
    tile_cfg['image_raw_shape'] = (resolution_h, resolution_w)
    tile_cfg['patch_split_num'] = (patch_split_number_h, patch_split_number_w)
    if mode == 'r':
        mode = mode + str(patch_number)
    result, log_dict = model(mode='infer', cai_mode=mode, process_num=process_num, image_lr=image_lr, image_hr=image_hr, tile_cfg=tile_cfg)
    return result

# def colorize_depth(depth):
#     depth = (depth - depth.min()) / (depth.max() - depth.min())
#     depth = (1 - depth) * 255.0
#     depth = depth.astype(np.uint8)
#     colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
#     return colored_depth


def colorize_depth(depth_map, min_depth=0, max_depth=0, cmap='Spectral'):
    """
    Colorize depth maps.
    """

    percentile = 0.03
    # percentile = 5
    min_depth = np.percentile(depth_map, percentile)
    max_depth = np.percentile(depth_map, 100 - percentile)
    
    assert len(depth_map.shape) >= 2, "Invalid dimension"
    
    if isinstance(depth_map, torch.Tensor):
        depth = depth_map.detach().clone().squeeze().numpy()
    elif isinstance(depth_map, np.ndarray):
        depth = depth_map.copy().squeeze()
    # reshape to [ (B,) H, W ]
    if depth.ndim < 3:
        depth = depth[np.newaxis, :, :]
    
    # colorize
    cm = matplotlib.colormaps[cmap]
    depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
    img_colored_np = cm(depth, bytes=False)[:,:,:,0:3]  # value from 0 to 1
    # img_colored_np = np.rollaxis(img_colored_np, 3, 1)

    img_colored_np = img_colored_np * 255.0
    img_colored_np = img_colored_np.astype(np.uint8)
    img_colored_np = img_colored_np[0, :, :, :]
    
    return img_colored_np

def gallery_fn(image, coarse, fine, **kwargs):
    return [(coarse, fine), image]

title = "# PatchFusion"
description = """Official demo for **PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation**.

PatchFusion is a deep learning model for high-resolution metric depth estimation from a single image.
Please refer to our [project webpage](https://zhyever.github.io/patchfusion), [paper](https://arxiv.org/abs/2312.02284) or [github](https://github.com/zhyever/PatchFusion) for more details.


We use [Depth-Anything vitl14](https://github.com/LiheYoung/Depth-Anything) as the default model in this demo.
You can slide the output to compare the depth prediction from the base low-resolution model and PatchFusion.

"""

markdown = """
PatchFusion works on default 4k (2160x3840) resolution. All input images will be resized to 4k before passing through PatchFusion as default. Users can increase the processing resolution in the advanced option (resolution_h, resolution_w).

PatchFusion has three modes: m1, m2, and rn. They are corresponding to the different tiling strategies P16, P49, and Rn in our paper. We rename it for general usage. Please refer to the documentation provided in [github inference instruction](https://github.com/zhyever/PatchFusion/docs/user_infer.md).

We provide customized tiling variations for m1 and m2. Users can adjust the patch split number in the advanced option (patch_split_number_h, patch_split_number_w) (default: 4x4 splitting).

The output depth map is resized to the original image resolution. Download for better visualization quality. 16-Bit Raw Depth = (pred_depth * 256).to(uint16).
"""

image_resizer = model.resizer

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Depth Prediction demo")
    gr.Markdown(markdown)

    prediction_coarse = gr.File(
        visible=False,
    )
    prediction_fine = gr.File(
        visible=False,
    )
    
    with gr.Row():
        with gr.Accordion("Advanced options", open=False):
            resolution_h = gr.Slider(label="Proccessing resolution height (Default 4K, 2160)", minimum=256, maximum=2700, value=2160, step=10)
            resolution_w = gr.Slider(label="Proccessing resolution width (Default 4K, 3840)", minimum=256, maximum=4800, value=3840, step=10)
            mode = gr.Radio(["m2", "r"], label="Tiling mode", info="We recommand using M2 for fast evaluation and R with 256 patches for best visualization results, respectively", elem_id='mode', value='m2')
            # mode = gr.Radio(["m1", "m2", "r"], label="Tiling mode", info="We recommand using M2 for fast evaluation and R with 256 patches for best visualization results, respectively", elem_id='mode', value='m1')
            patch_number = gr.Slider(1, 256, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
            patch_split_number_h = gr.Slider(label="Patch split number of height dimension (Default 4)", minimum=2, maximum=8, value=4, step=1)
            patch_split_number_w = gr.Slider(label="Patch split number of width dimension (Default 4)", minimum=2, maximum=8, value=4, step=1)
            
            color_map = gr.Radio(["turbo_r", "magma_r", "Spectral", "gray"], label="Colormap used to render depth map", elem_id='mode', value='turbo_r')

    with gr.Row():
        input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
    
    with gr.Row():
        depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
        
    raw_file = gr.File(label="16-Bit Raw Depth, Multiplier:256")
    submit = gr.Button("Submit")

    def on_submit(image, mode, patch_number, resolution_h, resolution_w, patch_split_number_h, patch_split_number_w, color_map):
        h, w = image.shape[:2]

        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
        image = transforms.ToTensor()(np.asarray(image)) # raw image
        image_lr = image_resizer(image.unsqueeze(dim=0)).float().to(DEVICE)
        
        # make sure the resolution and patch number are valid
        # adjust the relationship
        if resolution_h % (2 * patch_split_number_h) != 0:
            resolution_h = resolution_h // (2 * patch_split_number_h) * (2 * patch_split_number_h)
        if resolution_w % (2 * patch_split_number_w) != 0:
            resolution_w = resolution_w // (2 * patch_split_number_w) * (2 * patch_split_number_w)
            
        image_hr = F.interpolate(image.unsqueeze(dim=0), (resolution_h, resolution_w), mode='bicubic', align_corners=True).float().to(DEVICE)

        pf_prediction = predict_depth(model, image_lr, image_hr, mode, patch_number, resolution_h, resolution_w, patch_split_number_h, patch_split_number_w)
        coarse_prediction = depth_anything_base(image_lr)['metric_depth']
        pf_prediction = F.interpolate(pf_prediction, (h, w))[0, 0].detach().cpu().numpy()
        coarse_prediction = F.interpolate(coarse_prediction, (h, w))[0, 0].detach().cpu().numpy()
        
        pf_prediction_colored = colorize_depth(pf_prediction, cmap=color_map)
        coarse_predictioncolored = colorize_depth(coarse_prediction, cmap=color_map)
        
        raw_depth = Image.fromarray((pf_prediction*256).astype('uint16'))
        tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
        raw_depth.save(tmp.name)

        return [(coarse_predictioncolored, pf_prediction_colored), tmp.name]

    ips = [input_image, mode, patch_number, resolution_h, resolution_w, patch_split_number_h, patch_split_number_w, color_map]
    submit.click(on_submit, inputs=ips, outputs=[depth_image_slider, raw_file])

    inputs = [input_image, prediction_coarse, prediction_fine]
    outputs = [depth_image_slider, input_image,]
        
    examples = gr.Examples(
    inputs=inputs,
    outputs=outputs,
    examples=[
        [
            "examples/example_1.jpeg",
            "examples/example_1_coarse.png",
            "examples/example_1_fine.png",

        ],
        [
            "examples/example_2.jpeg",
            "examples/example_2_coarse.png",
            "examples/example_2_fine.png",

        ],
        [
            "examples/example_3.jpeg",
            "examples/example_3_coarse.png",
            "examples/example_3_fine.png",

        ]],
    cache_examples=True,
    fn=gallery_fn,)
    

if __name__ == '__main__':
    demo.queue().launch(share=True, show_error=True)