File size: 5,093 Bytes
78ab311
1f418ff
 
 
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f418ff
 
 
 
 
 
 
 
78ab311
 
 
 
 
 
 
 
 
 
 
1f418ff
 
78ab311
 
1f418ff
 
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f418ff
 
78ab311
 
 
1f418ff
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

import torch
import torch.nn as nn
import numpy as np

class Resize(object):
    """Resize sample to given size (width, height).
    """

    def __init__(
        self,
        width,
        height,
        resize_target=True,
        keep_aspect_ratio=False,
        ensure_multiple_of=1,
        resize_method="lower_bound",
    ):
        """Init.
        Args:
            width (int): desired output width
            height (int): desired output height
            resize_target (bool, optional):
                True: Resize the full sample (image, mask, target).
                False: Resize image only.
                Defaults to True.
            keep_aspect_ratio (bool, optional):
                True: Keep the aspect ratio of the input sample.
                Output sample might not have the given width and height, and
                resize behaviour depends on the parameter 'resize_method'.
                Defaults to False.
            ensure_multiple_of (int, optional):
                Output width and height is constrained to be multiple of this parameter.
                Defaults to 1.
            resize_method (str, optional):
                "lower_bound": Output will be at least as large as the given size.
                "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
                "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
                Defaults to "lower_bound".
        """
        # print("Params passed to Resize transform:")
        # print("\twidth: ", width)
        # print("\theight: ", height)
        # print("\tresize_target: ", resize_target)
        # print("\tkeep_aspect_ratio: ", keep_aspect_ratio)
        # print("\tensure_multiple_of: ", ensure_multiple_of)
        # print("\tresize_method: ", resize_method)

        self.__width = width
        self.__height = height

        self.__keep_aspect_ratio = keep_aspect_ratio
        self.__multiple_of = ensure_multiple_of
        self.__resize_method = resize_method

    def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
        y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)

        if max_val is not None and y > max_val:
            y = (np.floor(x / self.__multiple_of)
                 * self.__multiple_of).astype(int)

        if y < min_val:
            y = (np.ceil(x / self.__multiple_of)
                 * self.__multiple_of).astype(int)

        return y

    def get_size(self, width, height):
        # determine new height and width
        scale_height = self.__height / height
        scale_width = self.__width / width

        if self.__keep_aspect_ratio:
            if self.__resize_method == "lower_bound":
                # scale such that output size is lower bound
                if scale_width > scale_height:
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            elif self.__resize_method == "upper_bound":
                # scale such that output size is upper bound
                if scale_width < scale_height:
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            elif self.__resize_method == "minimal":
                # scale as least as possbile
                if abs(1 - scale_width) < abs(1 - scale_height):
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            else:
                raise ValueError(
                    f"resize_method {self.__resize_method} not implemented"
                )

        if self.__resize_method == "lower_bound":
            new_height = self.constrain_to_multiple_of(
                scale_height * height, min_val=self.__height
            )
            new_width = self.constrain_to_multiple_of(
                scale_width * width, min_val=self.__width
            )
        elif self.__resize_method == "upper_bound":
            new_height = self.constrain_to_multiple_of(
                scale_height * height, max_val=self.__height
            )
            new_width = self.constrain_to_multiple_of(
                scale_width * width, max_val=self.__width
            )
        elif self.__resize_method == "minimal":
            new_height = self.constrain_to_multiple_of(scale_height * height)
            new_width = self.constrain_to_multiple_of(scale_width * width)
        else:
            raise ValueError(
                f"resize_method {self.__resize_method} not implemented")

        return (new_width, new_height)

    def __call__(self, x):
        width, height = self.get_size(*x.shape[-2:][::-1])
        return nn.functional.interpolate(x, (int(height), int(width)), mode='bilinear', align_corners=True)