Spaces:
Runtime error
Runtime error
File size: 20,891 Bytes
1f418ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
import itertools
import math
import copy
import random
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from mmengine import print_log
from estimator.registry import MODELS
from estimator.models import build_model
from estimator.models.utils import get_activation
from zoedepth.models.zoedepth import ZoeDepth
import matplotlib.pyplot as plt
from estimator.models.utils import get_activation, generatemask, RunningAverageMap
from zoedepth.models.base_models.midas import Resize as ResizeZoe
from depth_anything.transform import Resize as ResizeDA
@MODELS.register_module()
class BaselinePretrain(nn.Module):
def __init__(self,
coarse_branch,
fine_branch,
sigloss,
min_depth,
max_depth,
image_raw_shape=(2160, 3840),
patch_process_shape=(384, 512),
patch_split_num=(4, 4),
target='coarse',
coarse_branch_zoe=None):
"""ZoeDepth model
"""
super().__init__()
self.patch_process_shape = patch_process_shape
self.tile_cfg = self.prepare_tile_cfg(image_raw_shape, patch_split_num)
self.min_depth = min_depth
self.max_depth = max_depth
self.coarse_branch_cfg = coarse_branch
self.fine_branch_cfg = fine_branch
if target == 'coarse':
if self.coarse_branch_cfg.type == 'ZoeDepth':
self.coarse_branch = ZoeDepth.build(**coarse_branch)
print_log("Current zoedepth.core.prep.resizer is {}".format(type(self.coarse_branch.core.prep.resizer)), logger='current')
self.resizer = ResizeZoe(patch_process_shape[1], patch_process_shape[0], keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")
elif self.coarse_branch_cfg.type == 'DA-ZoeDepth':
self.coarse_branch = ZoeDepth.build(**coarse_branch)
print_log("Current zoedepth.core.prep.resizer is {}".format(type(self.coarse_branch.core.prep.resizer)), logger='current')
self.resizer = ResizeDA(patch_process_shape[1], patch_process_shape[0], keep_aspect_ratio=False, ensure_multiple_of=14, resize_method="minimal")
if target == 'fine':
if self.fine_branch_cfg.type == 'ZoeDepth':
self.fine_branch = ZoeDepth.build(**fine_branch)
print_log("Current zoedepth.core.prep.resizer is {}".format(type(self.fine_branch.core.prep.resizer)), logger='current')
self.resizer = ResizeZoe(patch_process_shape[1], patch_process_shape[0], keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")
elif self.fine_branch_cfg.type == 'DA-ZoeDepth':
self.fine_branch = ZoeDepth.build(**fine_branch)
print_log("Current zoedepth.core.prep.resizer is {}".format(type(self.fine_branch.core.prep.resizer)), logger='current')
self.resizer = ResizeDA(patch_process_shape[1], patch_process_shape[0], keep_aspect_ratio=False, ensure_multiple_of=14, resize_method="minimal")
self.sigloss = build_model(sigloss)
self.target = target
def prepare_tile_cfg(self, image_raw_shape, patch_split_num):
# information for process
patch_split_num = patch_split_num
patch_reensemble_shape = (self.patch_process_shape[0] * patch_split_num[0], self.patch_process_shape[1] * patch_split_num[1])
patch_raw_shape = (image_raw_shape[0] // patch_split_num[0], image_raw_shape[1] // patch_split_num[1])
image_raw_shape = image_raw_shape
raw_h_split_point = []
raw_w_split_point = []
for i in range(patch_split_num[0]):
raw_h_split_point.append(int(patch_raw_shape[0] * i))
for i in range(patch_split_num[1]):
raw_w_split_point.append(int(patch_raw_shape[1] * i))
tile_cfg = {
'patch_split_num': patch_split_num,
'patch_reensemble_shape': patch_reensemble_shape,
'patch_raw_shape': patch_raw_shape,
'image_raw_shape': image_raw_shape,
'raw_h_split_point': raw_h_split_point,
'raw_w_split_point': raw_w_split_point}
return tile_cfg
def load_dict(self, dict):
if hasattr(self, 'coarse_branch') and hasattr(self, 'fine_branch') == False:
return self.coarse_branch.load_state_dict(dict, strict=True)
elif hasattr(self, 'fine_branch') and hasattr(self, 'coarse_branch') == False:
return self.fine_branch.load_state_dict(dict, strict=True)
else:
raise NotImplementedError('Not support loading coarse and fine together')
def get_save_dict(self):
model_state_dict = {}
if hasattr(self, 'coarse_branch') and hasattr(self, 'fine_branch') == False:
model_state_dict.update(self.coarse_branch.state_dict())
elif hasattr(self, 'fine_branch') and hasattr(self, 'coarse_branch') == False:
model_state_dict.update(self.fine_branch.state_dict())
else:
raise NotImplementedError('Not support training coarse and fine together')
return model_state_dict
def infer_forward(self, imgs_crop):
output_dict = self.fine_branch(imgs_crop)
return output_dict['metric_depth']
@torch.no_grad()
def random_tile(
self,
image_hr,
tile_temp=None,
blur_mask=None,
avg_depth_map=None,
tile_cfg=None,
process_num=4,):
## setting
height, width = tile_cfg['patch_raw_shape'][0], tile_cfg['patch_raw_shape'][1]
h_start_list = [random.randint(0, tile_cfg['image_raw_shape'][0] - height - 1) for _ in range(process_num)]
w_start_list = [random.randint(0, tile_cfg['image_raw_shape'][1] - width - 1)]
## prepare data
imgs_crop = []
bboxs = []
for h_start in h_start_list:
for w_start in w_start_list:
crop_image = image_hr[:, h_start: h_start+height, w_start: w_start+width]
crop_image_resized = self.resizer(crop_image.unsqueeze(dim=0)).squeeze(dim=0) # resize to patch_process_shape
bbox = torch.tensor([w_start, h_start, w_start+width, h_start+height])
imgs_crop.append(crop_image_resized)
bboxs.append(bbox)
imgs_crop = torch.stack(imgs_crop, dim=0)
bboxs = torch.stack(bboxs, dim=0)
imgs_crop = imgs_crop.to(image_hr.device)
bboxs = bboxs.to(image_hr.device).int()
bboxs_feat_factor = torch.tensor([
1 / tile_cfg['image_raw_shape'][1] * self.patch_process_shape[1],
1 / tile_cfg['image_raw_shape'][0] * self.patch_process_shape[0],
1 / tile_cfg['image_raw_shape'][1] * self.patch_process_shape[1],
1 / tile_cfg['image_raw_shape'][0] * self.patch_process_shape[0]], device=bboxs.device).unsqueeze(dim=0)
bboxs_feat = bboxs * bboxs_feat_factor
inds = torch.arange(bboxs.shape[0]).to(bboxs.device).unsqueeze(dim=-1)
bboxs_feat = torch.cat((inds, bboxs_feat), dim=-1)
if tile_temp is not None:
coarse_postprocess_dict = self.coarse_postprocess_test(bboxs=bboxs, bboxs_feat=bboxs_feat, **tile_temp)
prediction_list = []
if tile_temp is not None:
coarse_temp_dict = {}
for k, v in coarse_postprocess_dict.items():
if k == 'coarse_feats_roi':
coarse_temp_dict[k] = [f for f in v]
else:
coarse_temp_dict[k] = v
bbox_feat_forward = bboxs_feat
bbox_feat_forward[:, 0] = 0
prediction = self.infer_forward(imgs_crop, bbox_feat_forward, tile_temp, coarse_temp_dict)
else:
prediction = self.infer_forward(imgs_crop)
prediction_list.append(prediction)
predictions = torch.cat(prediction_list, dim=0)
predictions = F.interpolate(predictions, tile_cfg['patch_raw_shape'])
patch_select_idx = 0
for h_start in h_start_list:
for w_start in w_start_list:
temp_depth = predictions[patch_select_idx]
count_map = torch.zeros(tile_cfg['image_raw_shape'], device=temp_depth.device)
pred_depth = torch.zeros(tile_cfg['image_raw_shape'], device=temp_depth.device)
count_map[h_start: h_start+tile_cfg['patch_raw_shape'][0], w_start: w_start+tile_cfg['patch_raw_shape'][1]] = blur_mask
pred_depth[h_start: h_start+tile_cfg['patch_raw_shape'][0], w_start: w_start+tile_cfg['patch_raw_shape'][1]] = temp_depth * blur_mask
avg_depth_map.update(pred_depth, count_map)
patch_select_idx += 1
return avg_depth_map
@torch.no_grad()
def regular_tile(
self,
offset,
offset_process,
image_hr,
init_flag=False,
tile_temp=None,
blur_mask=None,
avg_depth_map=None,
tile_cfg=None,
process_num=4,):
## setting
height, width = tile_cfg['patch_raw_shape'][0], tile_cfg['patch_raw_shape'][1]
offset_h, offset_w = offset[0], offset[1]
assert offset_w >= 0 and offset_h >= 0
tile_num_h = (tile_cfg['image_raw_shape'][0] - offset_h) // height
tile_num_w = (tile_cfg['image_raw_shape'][1] - offset_w) // width
h_start_list = [height * h + offset_h for h in range(tile_num_h)]
w_start_list = [width * w + offset_w for w in range(tile_num_w)]
height_process, width_process = self.patch_process_shape[0], self.patch_process_shape[1]
offset_h_process, offset_w_process = offset_process[0], offset_process[1]
assert offset_h_process >= 0 and offset_w_process >= 0
tile_num_h_process = (tile_cfg['patch_reensemble_shape'][0] - offset_h_process) // height_process
tile_num_w_process = (tile_cfg['patch_reensemble_shape'][1] - offset_w_process) // width_process
h_start_list_process = [height_process * h + offset_h_process for h in range(tile_num_h_process)]
w_start_list_process = [width_process * w + offset_w_process for w in range(tile_num_w_process)]
## prepare data
imgs_crop = []
bboxs = []
iter_priors = []
for h_start in h_start_list:
for w_start in w_start_list:
crop_image = image_hr[:, h_start: h_start+height, w_start: w_start+width]
crop_image_resized = self.resizer(crop_image.unsqueeze(dim=0)).squeeze(dim=0) # resize to patch_process_shape
bbox = torch.tensor([w_start, h_start, w_start+width, h_start+height])
imgs_crop.append(crop_image_resized)
bboxs.append(bbox)
imgs_crop = torch.stack(imgs_crop, dim=0)
bboxs = torch.stack(bboxs, dim=0)
imgs_crop = imgs_crop.to(image_hr.device)
bboxs = bboxs.to(image_hr.device).int()
bboxs = bboxs.squeeze() # HACK: during inference, 1, 16, 4 -> 16, 4
if len(bboxs.shape) == 1:
bboxs = bboxs.unsqueeze(dim=0)
bboxs_feat_factor = torch.tensor([
1 / tile_cfg['image_raw_shape'][1] * self.patch_process_shape[1],
1 / tile_cfg['image_raw_shape'][0] * self.patch_process_shape[0],
1 / tile_cfg['image_raw_shape'][1] * self.patch_process_shape[1],
1 / tile_cfg['image_raw_shape'][0] * self.patch_process_shape[0]], device=bboxs.device).unsqueeze(dim=0)
bboxs_feat = bboxs * bboxs_feat_factor
inds = torch.arange(bboxs.shape[0]).to(bboxs.device).unsqueeze(dim=-1)
bboxs_feat = torch.cat((inds, bboxs_feat), dim=-1)
# post_process
if tile_temp is not None:
# coarse_prediction_roi, coarse_features_patch_area, crop_coarse_prediction_collection = self.coarse_postprocess_test(bboxs=bboxs, bboxs_feat=bboxs_feat, **tile_temp)
coarse_postprocess_dict = self.coarse_postprocess_test(bboxs=bboxs, bboxs_feat=bboxs_feat, **tile_temp)
count_map = torch.zeros(tile_cfg['patch_reensemble_shape'], device=image_hr.device)
pred_depth = torch.zeros(tile_cfg['patch_reensemble_shape'], device=image_hr.device)
prediction_list = []
split_rebatch_image = torch.split(imgs_crop, process_num, dim=0)
for idx, rebatch_image in enumerate(split_rebatch_image):
if tile_temp is not None:
coarse_temp_dict = {}
for k, v in coarse_postprocess_dict.items():
if k == 'coarse_feats_roi':
coarse_temp_dict[k] = [f[idx*process_num:(idx+1)*process_num, :, :, :] for f in v]
else:
coarse_temp_dict[k] = v[idx*process_num:(idx+1)*process_num, :, :, :]
bbox_feat_forward = bboxs_feat[idx*process_num:(idx+1)*process_num, :]
bbox_feat_forward[:, 0] = 0
prediction = self.infer_forward(rebatch_image, bbox_feat_forward, tile_temp, coarse_temp_dict)
else:
prediction = self.infer_forward(rebatch_image)
prediction_list.append(prediction)
predictions = torch.cat(prediction_list, dim=0)
patch_select_idx = 0
for h_start in h_start_list_process:
for w_start in w_start_list_process:
temp_depth = predictions[patch_select_idx]
if init_flag:
count_map[h_start: h_start+self.patch_process_shape[0], w_start: w_start+self.patch_process_shape[1]] = blur_mask
pred_depth[h_start: h_start+self.patch_process_shape[0], w_start: w_start+self.patch_process_shape[1]] = temp_depth * blur_mask
else:
count_map = torch.zeros(tile_cfg['patch_reensemble_shape'], device=temp_depth.device)
pred_depth = torch.zeros(tile_cfg['patch_reensemble_shape'], device=temp_depth.device)
count_map[h_start: h_start+self.patch_process_shape[0], w_start: w_start+self.patch_process_shape[1]] = blur_mask
pred_depth[h_start: h_start+self.patch_process_shape[0], w_start: w_start+self.patch_process_shape[1]] = temp_depth * blur_mask
avg_depth_map.update(pred_depth, count_map)
patch_select_idx += 1
if init_flag:
avg_depth_map = RunningAverageMap(pred_depth, count_map)
return avg_depth_map
def forward(
self,
mode,
image_lr,
image_hr,
depth_gt,
crop_depths=None,
crops_image_hr=None,
bboxs=None,
tile_cfg=None,
cai_mode='m1',
process_num=4,
**kwargs):
if mode == 'train':
loss_dict = {}
if self.target == 'coarse':
model_output_dict = self.coarse_branch(image_lr)
depth_prediction = model_output_dict['metric_depth']
loss_dict['coarse_loss'] = self.sigloss(depth_prediction, depth_gt, self.min_depth, self.max_depth)
loss_dict['total_loss'] = loss_dict['coarse_loss']
return loss_dict, {'rgb': image_lr, 'depth_pred': depth_prediction, 'depth_gt': depth_gt}
elif self.target == 'fine':
model_output_dict = self.fine_branch(crops_image_hr) # 1/2 res, 1/4 res, 1/8 res, 1/16 res
depth_prediction = model_output_dict['metric_depth']
loss_dict['fine_loss'] = self.sigloss(depth_prediction, crop_depths, self.min_depth, self.max_depth)
loss_dict['total_loss'] = loss_dict['fine_loss']
return loss_dict, {'rgb': image_lr, 'depth_pred': depth_prediction, 'depth_gt': crop_depths}
else:
raise NotImplementedError
else:
if self.target == 'coarse':
model_output_dict = self.coarse_branch(image_lr)
depth_prediction = model_output_dict['metric_depth']
elif self.target == 'fine':
if tile_cfg is None:
tile_cfg = self.tile_cfg
else:
tile_cfg = self.prepare_tile_cfg(tile_cfg['image_raw_shape'], tile_cfg['patch_split_num'])
assert image_hr.shape[0] == 1
blur_mask = generatemask((self.patch_process_shape[0], self.patch_process_shape[1])) + 1e-3
blur_mask = torch.tensor(blur_mask, device=image_hr.device)
avg_depth_map = self.regular_tile(
offset=[0, 0],
offset_process=[0, 0],
image_hr=image_hr[0],
init_flag=True,
tile_temp=None,
blur_mask=blur_mask,
tile_cfg=tile_cfg,
process_num=process_num)
if cai_mode == 'm2' or cai_mode[0] == 'r':
avg_depth_map = self.regular_tile(
offset=[0, tile_cfg['patch_raw_shape'][1]//2],
offset_process=[0, self.patch_process_shape[1]//2],
image_hr=image_hr[0], init_flag=False, tile_temp=None, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
avg_depth_map = self.regular_tile(
offset=[tile_cfg['patch_raw_shape'][0]//2, 0],
offset_process=[self.patch_process_shape[0]//2, 0],
image_hr=image_hr[0], init_flag=False, tile_temp=None, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
avg_depth_map = self.regular_tile(
offset=[tile_cfg['patch_raw_shape'][0]//2, tile_cfg['patch_raw_shape'][1]//2],
offset_process=[self.patch_process_shape[0]//2, self.patch_process_shape[1]//2],
init_flag=False, image_hr=image_hr[0], tile_temp=None, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
if cai_mode[0] == 'r':
blur_mask = generatemask((tile_cfg['patch_raw_shape'][0], tile_cfg['patch_raw_shape'][1])) + 1e-3
blur_mask = torch.tensor(blur_mask, device=image_hr.device)
avg_depth_map.resize(tile_cfg['image_raw_shape'])
patch_num = int(cai_mode[1:])
for i in range(patch_num):
avg_depth_map = self.random_tile(
image_hr=image_hr[0], tile_temp=None, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
depth = avg_depth_map.average_map
depth = depth.unsqueeze(dim=0).unsqueeze(dim=0)
return depth, {}
else:
raise NotImplementedError
return depth_prediction, {'rgb': image_lr, 'depth_pred': depth_prediction, 'depth_gt': depth_gt}
|