Spaces:
Runtime error
Runtime error
File size: 21,678 Bytes
1f418ff 23a0842 1f418ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
import itertools
import math
import copy
import torch
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from mmengine import print_log
from mmengine.config import ConfigDict
from torchvision.ops import roi_align as torch_roi_align
from huggingface_hub import PyTorchModelHubMixin
from transformers import PretrainedConfig
from estimator.registry import MODELS
from estimator.models import build_model
from estimator.models.baseline_pretrain import BaselinePretrain
from estimator.models.utils import generatemask
from zoedepth.models.zoedepth import ZoeDepth
from zoedepth.models.layers.attractor import AttractorLayer, AttractorLayerUnnormed
from zoedepth.models.layers.dist_layers import ConditionalLogBinomial
from zoedepth.models.layers.localbins_layers import (Projector, SeedBinRegressor, SeedBinRegressorUnnormed)
from zoedepth.models.base_models.midas import Resize as ResizeZoe
from depth_anything.transform import Resize as ResizeDA
@MODELS.register_module()
class PatchFusion(BaselinePretrain, PyTorchModelHubMixin):
def __init__(
self,
config,):
"""ZoeDepth model
"""
nn.Module.__init__(self)
if isinstance(config, ConfigDict):
# convert a ConfigDict to a PretrainedConfig for hf saving
config = PretrainedConfig.from_dict(config.to_dict())
config.load_branch = True
else:
# used when loading patchfusion from hf model space
config = PretrainedConfig.from_dict(ConfigDict(**config).to_dict())
config.load_branch = False
config.coarse_branch.pretrained_resource = None
config.fine_branch.pretrained_resource = None
self.config = config
self.min_depth = config.min_depth
self.max_depth = config.max_depth
self.patch_process_shape = config.patch_process_shape
self.tile_cfg = self.prepare_tile_cfg(config.image_raw_shape, config.patch_split_num)
self.coarse_branch_cfg = config.coarse_branch
if config.coarse_branch.type == 'ZoeDepth':
self.coarse_branch = ZoeDepth.build(**config.coarse_branch)
self.resizer = ResizeZoe(config.patch_process_shape[1], config.patch_process_shape[0], keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")
elif config.coarse_branch.type == 'DA-ZoeDepth':
self.coarse_branch = ZoeDepth.build(**config.coarse_branch)
self.resizer = ResizeDA(config.patch_process_shape[1], config.patch_process_shape[0], keep_aspect_ratio=False, ensure_multiple_of=14, resize_method="minimal")
else:
raise NotImplementedError
if config.fine_branch.type == 'ZoeDepth':
self.fine_branch = ZoeDepth.build(**config.fine_branch)
elif config.fine_branch.type == 'DA-ZoeDepth':
self.fine_branch = ZoeDepth.build(**config.fine_branch)
else:
raise NotImplementedError
if config.load_branch:
print_log("Loading coarse_branch from {}".format(config.pretrain_model[0]), logger='current')
print_log(self.coarse_branch.load_state_dict(torch.load(config.pretrain_model[0], map_location='cpu')['model_state_dict'], strict=True), logger='current') # coarse ckp
print_log("Loading fine_branch from {}".format(config.pretrain_model[1]), logger='current')
print_log(self.fine_branch.load_state_dict(torch.load(config.pretrain_model[1], map_location='cpu')['model_state_dict'], strict=True), logger='current')
# freeze all these parameters
for param in self.coarse_branch.parameters():
param.requires_grad = False
for param in self.fine_branch.parameters():
param.requires_grad = False
self.sigloss = build_model(config.sigloss)
N_MIDAS_OUT = 32
btlnck_features = self.fine_branch.core.output_channels[0]
self.fusion_conv_list = nn.ModuleList()
for i in range(6):
if i == 5:
layer = nn.Conv2d(N_MIDAS_OUT * 2, N_MIDAS_OUT, 3, 1, 1)
else:
layer = nn.Conv2d(btlnck_features * 2, btlnck_features, 3, 1, 1)
self.fusion_conv_list.append(layer)
self.guided_fusion = build_model(config.guided_fusion)
# NOTE: a decoder head
if self.coarse_branch_cfg.bin_centers_type == "normed":
SeedBinRegressorLayer = SeedBinRegressor
Attractor = AttractorLayer
elif self.coarse_branch_cfg.bin_centers_type == "softplus": # default
SeedBinRegressorLayer = SeedBinRegressorUnnormed
Attractor = AttractorLayerUnnormed
elif self.coarse_branch_cfg.bin_centers_type == "hybrid1":
SeedBinRegressorLayer = SeedBinRegressor
Attractor = AttractorLayerUnnormed
elif self.coarse_branch_cfg.bin_centers_type == "hybrid2":
SeedBinRegressorLayer = SeedBinRegressorUnnormed
Attractor = AttractorLayer
else:
raise ValueError(
"bin_centers_type should be one of 'normed', 'softplus', 'hybrid1', 'hybrid2'")
N_MIDAS_OUT = 32
btlnck_features = self.fine_branch.core.output_channels[0]
num_out_features = self.fine_branch.core.output_channels[1:] # all of them are the same
self.seed_bin_regressor = SeedBinRegressorLayer(
btlnck_features, n_bins=self.coarse_branch_cfg.n_bins, min_depth=config.min_depth, max_depth=config.max_depth)
self.seed_projector = Projector(btlnck_features, self.coarse_branch_cfg.bin_embedding_dim)
self.projectors = nn.ModuleList([
Projector(num_out, self.coarse_branch_cfg.bin_embedding_dim)
for num_out in num_out_features
])
# 1000, 2, inv, mean
self.attractors = nn.ModuleList([
Attractor(self.coarse_branch_cfg.bin_embedding_dim, self.coarse_branch_cfg.n_bins, n_attractors=self.coarse_branch_cfg.n_attractors[i], min_depth=config.min_depth, max_depth=config.max_depth,
alpha=self.coarse_branch_cfg.attractor_alpha, gamma=self.coarse_branch_cfg.attractor_gamma, kind=self.coarse_branch_cfg.attractor_kind, attractor_type=self.coarse_branch_cfg.attractor_type)
for i in range(len(num_out_features))
])
last_in = N_MIDAS_OUT + 1 # +1 for relative depth
# use log binomial instead of softmax
self.conditional_log_binomial = ConditionalLogBinomial(
last_in, self.coarse_branch_cfg.bin_embedding_dim, n_classes=self.coarse_branch_cfg.n_bins, min_temp=self.coarse_branch_cfg.min_temp, max_temp=self.coarse_branch_cfg.max_temp)
# NOTE: consistency training
self.consistency_training = False
def load_dict(self, dict):
return self.load_state_dict(dict, strict=False)
def get_save_dict(self):
current_model_dict = self.state_dict()
save_state_dict = {}
for k, v in current_model_dict.items():
if 'coarse_branch' in k or 'fine_branch' in k:
pass
else:
save_state_dict[k] = v
return save_state_dict
def coarse_forward(self, image_lr):
with torch.no_grad():
if self.coarse_branch.training:
self.coarse_branch.eval()
deep_model_output_dict = self.coarse_branch(image_lr, return_final_centers=True)
deep_features = deep_model_output_dict['temp_features'] # x_d0 1/128, x_blocks_feat_0 1/64, x_blocks_feat_1 1/32, x_blocks_feat_2 1/16, x_blocks_feat_3 1/8, midas_final_feat 1/4 [based on 384x4, 512x4]
coarse_prediction = deep_model_output_dict['metric_depth']
coarse_features = [
deep_features['x_d0'],
deep_features['x_blocks_feat_0'],
deep_features['x_blocks_feat_1'],
deep_features['x_blocks_feat_2'],
deep_features['x_blocks_feat_3'],
deep_features['midas_final_feat']] # bs, c, h, w
return coarse_prediction, coarse_features
def fine_forward(self, image_hr_crop):
with torch.no_grad():
if self.fine_branch.training:
self.fine_branch.eval()
deep_model_output_dict = self.fine_branch(image_hr_crop, return_final_centers=True)
deep_features = deep_model_output_dict['temp_features'] # x_d0 1/128, x_blocks_feat_0 1/64, x_blocks_feat_1 1/32, x_blocks_feat_2 1/16, x_blocks_feat_3 1/8, midas_final_feat 1/4 [based on 384x4, 512x4]
fine_prediction = deep_model_output_dict['metric_depth']
fine_features = [
deep_features['x_d0'],
deep_features['x_blocks_feat_0'],
deep_features['x_blocks_feat_1'],
deep_features['x_blocks_feat_2'],
deep_features['x_blocks_feat_3'],
deep_features['midas_final_feat']] # bs, c, h, w
return fine_prediction, fine_features
def coarse_postprocess_train(self, coarse_prediction, coarse_features, bboxs, bboxs_feat):
coarse_features_patch_area = []
for idx, feat in enumerate(coarse_features):
bs, _, h, w = feat.shape
cur_lvl_feat = torch_roi_align(feat, bboxs_feat, (h, w), h/self.patch_process_shape[0], aligned=True)
coarse_features_patch_area.append(cur_lvl_feat)
coarse_prediction_roi = torch_roi_align(coarse_prediction, bboxs_feat, coarse_prediction.shape[-2:], coarse_prediction.shape[-2]/self.patch_process_shape[0], aligned=True)
return coarse_prediction_roi, coarse_features_patch_area
def coarse_postprocess_test(self, coarse_prediction, coarse_features, bboxs, bboxs_feat):
patch_num = bboxs_feat.shape[0]
coarse_features_patch_area = []
for idx, feat in enumerate(coarse_features):
bs, _, h, w = feat.shape
feat_extend = feat.repeat(patch_num, 1, 1, 1)
cur_lvl_feat = torch_roi_align(feat_extend, bboxs_feat, (h, w), h/self.patch_process_shape[0], aligned=True)
coarse_features_patch_area.append(cur_lvl_feat)
coarse_prediction = coarse_prediction.repeat(patch_num, 1, 1, 1)
coarse_prediction_roi = torch_roi_align(coarse_prediction, bboxs_feat, coarse_prediction.shape[-2:], coarse_prediction.shape[-2]/self.patch_process_shape[0], aligned=True)
return_dict = {
'coarse_depth_roi': coarse_prediction_roi,
'coarse_feats_roi': coarse_features_patch_area}
return return_dict
def fusion_forward(self, fine_depth_pred, crop_input, coarse_model_midas_enc_feats, fine_model_midas_enc_feats, bbox_feat, coarse_depth_roi=None, coarse_feats_roi=None):
feat_cat_list = []
feat_plus_list = []
for l_i, (f_ca, f_c_roi, f_f) in enumerate(zip(coarse_model_midas_enc_feats, coarse_feats_roi, fine_model_midas_enc_feats)):
feat_cat = self.fusion_conv_list[l_i](torch.cat([f_c_roi, f_f], dim=1))
feat_plus = f_c_roi + f_f
feat_cat_list.append(feat_cat)
feat_plus_list.append(feat_plus)
input_tensor = torch.cat([coarse_depth_roi, fine_depth_pred, crop_input], dim=1)
# HACK: hack for depth-anything
# if self.coarse_branch_cfg.type == 'DA-ZoeDepth':
# input_tensor = F.interpolate(input_tensor, size=(448, 592), mode='bilinear', align_corners=True)
output = self.guided_fusion(
input_tensor = input_tensor,
guide_plus = feat_plus_list,
guide_cat = feat_cat_list,
bbox = bbox_feat,
fine_feat_crop = fine_model_midas_enc_feats,
coarse_feat_whole = coarse_model_midas_enc_feats,
coarse_feat_crop = coarse_feats_roi,
coarse_feat_whole_hack=None)[::-1] # low -> high
x_blocks = output
x = x_blocks[0]
x_blocks = x_blocks[1:]
proj_feat_list = []
if self.consistency_training:
if self.consistency_target == 'unet_feat':
proj_feat_list = []
for idx, feat in enumerate(output):
proj_feat = self.consistency_projs[idx](feat)
proj_feat_list.append(proj_feat)
# NOTE: below is ZoeDepth implementation
last = x_blocks[-1] # have already been fused in x_blocks
bs, c, h, w = last.shape
rel_cond = torch.zeros((bs, 1, h, w), device=last.device)
_, seed_b_centers = self.seed_bin_regressor(x)
if self.coarse_branch_cfg.bin_centers_type == 'normed' or self.coarse_branch_cfg.bin_centers_type == 'hybrid2':
b_prev = (seed_b_centers - self.min_depth) / \
(self.max_depth - self.min_depth)
else:
b_prev = seed_b_centers
prev_b_embedding = self.seed_projector(x)
# unroll this loop for better performance
for idx, (projector, attractor, x) in enumerate(zip(self.projectors, self.attractors, x_blocks)):
b_embedding = projector(x)
b, b_centers = attractor(
b_embedding, b_prev, prev_b_embedding, interpolate=True)
b_prev = b.clone()
prev_b_embedding = b_embedding.clone()
if self.consistency_training:
if self.consistency_target == 'final_feat':
proj_feat_1 = self.consistency_projs[0](b_centers)
proj_feat_2 = self.consistency_projs[1](last)
proj_feat_3 = self.consistency_projs[2](b_embedding)
proj_feat_list = [proj_feat_1, proj_feat_2, proj_feat_3]
rel_cond = nn.functional.interpolate(
rel_cond, size=last.shape[2:], mode='bilinear', align_corners=True)
last = torch.cat([last, rel_cond], dim=1) # + self.coarse_depth_proj(whole_depth_roi_pred) + self.fine_depth_proj(fine_depth_pred)
b_embedding = nn.functional.interpolate(
b_embedding, last.shape[-2:], mode='bilinear', align_corners=True)
# till here, we have features (attached with a relative depth prediction) and embeddings
# post process
# final_pred = out * self.blur_mask + whole_depth_roi_pred * (1-self.blur_mask)
# out = F.interpolate(out, (540, 960), mode='bilinear', align_corners=True)
x = self.conditional_log_binomial(last, b_embedding)
b_centers = nn.functional.interpolate(
b_centers, x.shape[-2:], mode='bilinear', align_corners=True)
out = torch.sum(x * b_centers, dim=1, keepdim=True)
return out, proj_feat_list
def infer_forward(self, imgs_crop, bbox_feat_forward, tile_temp, coarse_temp_dict):
fine_prediction, fine_features = self.fine_forward(imgs_crop)
depth_prediction, consistency_target = \
self.fusion_forward(
fine_prediction,
imgs_crop,
tile_temp['coarse_features'],
fine_features,
bbox_feat_forward,
**coarse_temp_dict)
return depth_prediction
def forward(
self,
mode,
image_lr,
image_hr,
depth_gt=None,
crops_image_hr=None,
crop_depths=None,
bboxs=None,
tile_cfg=None,
cai_mode='m1',
process_num=4):
if mode == 'train':
bboxs_feat_factor = torch.tensor([
1 / self.tile_cfg['image_raw_shape'][1] * self.patch_process_shape[1],
1 / self.tile_cfg['image_raw_shape'][0] * self.patch_process_shape[0],
1 / self.tile_cfg['image_raw_shape'][1] * self.patch_process_shape[1],
1 / self.tile_cfg['image_raw_shape'][0] * self.patch_process_shape[0]], device=bboxs.device).unsqueeze(dim=0)
bboxs_feat = bboxs * bboxs_feat_factor
inds = torch.arange(bboxs.shape[0]).to(bboxs.device).unsqueeze(dim=-1)
bboxs_feat = torch.cat((inds, bboxs_feat), dim=-1)
coarse_prediction, coarse_features = self.coarse_forward(image_lr)
fine_prediction, fine_features = self.fine_forward(crops_image_hr)
coarse_prediction_roi, coarse_features_patch_area = self.coarse_postprocess_train(coarse_prediction, coarse_features, bboxs, bboxs_feat)
depth_prediction, consistency_target = self.fusion_forward(
fine_prediction,
crops_image_hr,
coarse_features,
fine_features,
bboxs_feat,
coarse_depth_roi=coarse_prediction_roi,
coarse_feats_roi=coarse_features_patch_area,)
loss_dict = {}
loss_dict['sig_loss'] = self.sigloss(depth_prediction, crop_depths, self.min_depth, self.max_depth)
loss_dict['total_loss'] = loss_dict['sig_loss']
return loss_dict, {'rgb': crops_image_hr, 'depth_pred': depth_prediction, 'depth_gt': crop_depths}
else:
if tile_cfg is None:
tile_cfg = self.tile_cfg
else:
tile_cfg = self.prepare_tile_cfg(tile_cfg['image_raw_shape'], tile_cfg['patch_split_num'])
assert image_hr.shape[0] == 1
coarse_prediction, coarse_features = self.coarse_forward(image_lr)
tile_temp = {
'coarse_prediction': coarse_prediction,
'coarse_features': coarse_features,}
blur_mask = generatemask((self.patch_process_shape[0], self.patch_process_shape[1])) + 1e-3
blur_mask = torch.tensor(blur_mask, device=image_hr.device)
avg_depth_map = self.regular_tile(
offset=[0, 0],
offset_process=[0, 0],
image_hr=image_hr[0],
init_flag=True,
tile_temp=tile_temp,
blur_mask=blur_mask,
tile_cfg=tile_cfg,
process_num=process_num)
if cai_mode == 'm2' or cai_mode[0] == 'r':
avg_depth_map = self.regular_tile(
offset=[0, tile_cfg['patch_raw_shape'][1]//2],
offset_process=[0, self.patch_process_shape[1]//2],
image_hr=image_hr[0], init_flag=False, tile_temp=tile_temp, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
avg_depth_map = self.regular_tile(
offset=[tile_cfg['patch_raw_shape'][0]//2, 0],
offset_process=[self.patch_process_shape[0]//2, 0],
image_hr=image_hr[0], init_flag=False, tile_temp=tile_temp, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
avg_depth_map = self.regular_tile(
offset=[tile_cfg['patch_raw_shape'][0]//2, tile_cfg['patch_raw_shape'][1]//2],
offset_process=[self.patch_process_shape[0]//2, self.patch_process_shape[1]//2],
init_flag=False, image_hr=image_hr[0], tile_temp=tile_temp, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
if cai_mode[0] == 'r':
blur_mask = generatemask((tile_cfg['patch_raw_shape'][0], tile_cfg['patch_raw_shape'][1])) + 1e-3
blur_mask = torch.tensor(blur_mask, device=image_hr.device)
avg_depth_map.resize(tile_cfg['image_raw_shape'])
patch_num = int(cai_mode[1:]) // process_num
for i in range(patch_num):
avg_depth_map = self.random_tile(
image_hr=image_hr[0], tile_temp=tile_temp, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
depth = avg_depth_map.average_map
depth = depth.unsqueeze(dim=0).unsqueeze(dim=0)
return depth, {'rgb': image_lr, 'depth_pred': depth, 'depth_gt': depth_gt}
|