Spaces:
Runtime error
Runtime error
File size: 27,058 Bytes
1f418ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import copy
import kornia
import torch
import torch.nn as nn
from mmengine import print_log
import torch.nn.functional as F
import random
import math
from estimator.registry import MODELS
from kornia.losses import dice_loss, focal_loss
@MODELS.register_module()
class SILogLoss(nn.Module):
"""SILog loss (pixel-wise)"""
def __init__(self, beta=0.15, **kwargs):
super(SILogLoss, self).__init__()
self.name = 'SILog'
self.beta = beta
def forward(self, input, target, min_depth, max_depth, additional_mask=None):
_, _, h_i, w_i = input.shape
_, _, h_t, w_t = target.shape
if h_i != h_t or w_i != w_t:
input = F.interpolate(input, (h_t, w_t), mode='bilinear', align_corners=True)
mask = torch.logical_and(target>min_depth, target<max_depth)
if additional_mask is not None:
mask_merge = torch.logical_and(mask, additional_mask)
if torch.sum(mask_merge) >= h_i * w_i * 0.001:
mask = mask_merge
else:
print_log("torch.sum(mask_merge) < h_i * w_i * 0.001, reduce to previous mask for stable training", logger='current')
if torch.sum(mask) <= 1:
print_log("torch.sum(mask) <= 1, hack to skip avoiding nan", logger='current')
return input * 0.0
input = input[mask]
target = target[mask]
alpha = 1e-7
g = torch.log(input + alpha) - torch.log(target + alpha)
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)
loss = 10 * torch.sqrt(Dg)
if torch.isnan(loss):
print_log("Nan SILog loss", logger='current')
print_log("input: {}".format(input.shape), logger='current')
print_log("target: {}".format(target.shape), logger='current')
print_log("G: {}".format(torch.sum(torch.isnan(g))), logger='current')
print_log("Input min: {} max: {}".format(torch.min(input), torch.max(input)), logger='current')
print_log("Target min: {} max: {}".format(torch.min(target), torch.max(target)), logger='current')
print_log("Dg: {}".format(torch.isnan(Dg)), logger='current')
print_log("loss: {}".format(torch.isnan(loss)), logger='current')
return loss
def get_grad_map(value):
grad = kornia.filters.spatial_gradient(value)
grad_xy = (grad[:,:,0,:,:] ** 2 + grad[:,:,1,:,:] ** 2) ** (1/2)
return grad_xy
def get_grad_error_mask(gt, coarse_prediction, shape=(384, 512), min_depth=1e-3, max_depth=80):
invalid_mask = torch.logical_or(gt<=min_depth, gt>=max_depth)
gt_grad = get_grad_map(gt)
coarse_prediction_grad = get_grad_map(coarse_prediction)
grad_error = ((gt_grad - coarse_prediction_grad) / gt).abs()
grad_error[grad_error>0.001] = 1.
grad_error[invalid_mask] = 2. # filter invalid area
grad_error[gt>10000] = 3.
return grad_error.long().squeeze(dim=1)
def get_grad_value_error_mask(gt, coarse_prediction, shape=(384, 512), min_depth=1e-3, max_depth=80):
invalid_mask = torch.logical_or(gt<=min_depth, gt>=max_depth)
error = ((gt - coarse_prediction) / gt).abs()
error[error>0.1] = 1.
gt_grad = get_grad_map(gt)
coarse_prediction_grad = get_grad_map(coarse_prediction)
grad_error = ((gt_grad - coarse_prediction_grad) / gt).abs()
error[grad_error>0.001] = 1.
error[invalid_mask] = 2. # filter invalid area
error[gt>10000] = 3.
return error.long().squeeze(dim=1)
def get_incoherent_mask(gt, shape=(384, 512), min_depth=1e-3, max_depth=80):
# incoherent
ori_shpae = gt.shape[-2:]
gt_lr = F.interpolate(gt, shape, mode='bilinear', align_corners=True)
invalid_mask = torch.logical_or(gt<=min_depth, gt>=max_depth)
gt_recover = F.interpolate(gt_lr, ori_shpae, mode='bilinear', align_corners=True)
residue = (gt - gt_recover).abs()
gt_label = torch.zeros_like(gt)
gt_label[residue >= 0.01] = 1. # set incoherent area as 1
gt_label[invalid_mask] = 2. # filter invalid area
gt_label[gt>10000] = 3.
return gt_label.long().squeeze(dim=1)
def get_incoherent_grad_error_mask(gt, coarse_prediction, shape=(384, 512), min_depth=1e-3, max_depth=80):
# incoherent
ori_shpae = gt.shape[-2:]
gt_lr = F.interpolate(gt, shape, mode='bilinear', align_corners=True)
invalid_mask = torch.logical_or(gt<=min_depth, gt>=max_depth)
gt_recover = F.interpolate(gt_lr, ori_shpae, mode='bilinear', align_corners=True)
residue = (gt - gt_recover).abs()
# coarse_prediction = F.interpolate(coarse_prediction, gt.shape[-2:], mode='bilinear', align_corners=True)
# error = (gt - coarse_prediction).abs()
# grad error
gt_grad = get_grad_map(gt)
coarse_prediction_grad = get_grad_map(coarse_prediction)
grad_error = ((gt_grad - coarse_prediction_grad) / gt).abs()
bad_area_mask = torch.logical_or(residue>0.01, grad_error>0.001)
gt_label = torch.zeros_like(gt)
gt_label[bad_area_mask] = 1.
gt_label[invalid_mask] = 2. # filter invalid area
gt_label[gt>10000] = 3.
return gt_label.long().squeeze(dim=1)
def get_incoherent_grad_value_error_mask(gt, coarse_prediction, shape=(384, 512), min_depth=1e-3, max_depth=80):
# incoherent
ori_shpae = gt.shape[-2:]
gt_lr = F.interpolate(gt, shape, mode='bilinear', align_corners=True)
invalid_mask = torch.logical_or(gt<=min_depth, gt>=max_depth)
gt_recover = F.interpolate(gt_lr, ori_shpae, mode='bilinear', align_corners=True)
residue = (gt - gt_recover).abs()
# value error
coarse_prediction = F.interpolate(coarse_prediction, gt.shape[-2:], mode='bilinear', align_corners=True)
error = (gt - coarse_prediction).abs()
bad_area_mask = torch.logical_or(residue>0.01, error>0.5)
# grad error
gt_grad = get_grad_map(gt)
coarse_prediction_grad = get_grad_map(coarse_prediction)
grad_error = ((gt_grad - coarse_prediction_grad) / gt).abs()
bad_area_mask = torch.logical_or(grad_error, grad_error>0.001)
gt_label = torch.zeros_like(gt)
gt_label[bad_area_mask] = 1.
gt_label[invalid_mask] = 2. # filter invalid area
gt_label[gt>10000] = 3.
return gt_label.long().squeeze(dim=1)
class GeneralizedSoftDiceLoss(nn.Module):
def __init__(self,
p=1,
smooth=1,
reduction='mean'):
super(GeneralizedSoftDiceLoss, self).__init__()
self.p = p
self.smooth = smooth
self.reduction = reduction
def forward(self, probs, label):
'''
args: logits: tensor of shape (N, C, H, W)
args: label: tensor of shape(N, H, W)
'''
# compute loss
numer = torch.sum((probs*label), dim=(2, 3))
denom = torch.sum(probs.pow(self.p) + label.pow(self.p), dim=(2, 3))
numer = torch.sum(numer, dim=1)
denom = torch.sum(denom, dim=1)
loss = 1 - (2*numer+self.smooth)/(denom+self.smooth)
if self.reduction == 'mean':
loss = loss.mean()
return loss
@MODELS.register_module()
class EdgeClsLoss(nn.Module):
"""Error loss (pixel-wise)"""
def __init__(self, focal_weight=0.5):
super(EdgeClsLoss, self).__init__()
self.name = 'Error'
self.criterion_dice = GeneralizedSoftDiceLoss()
self.criterion_bce = nn.BCELoss()
self.focal_weight = focal_weight
def forward(self, input, target):
_, _, h_i, w_i = input.shape
_, h_t, w_t = target.shape
if h_i != h_t or w_i != w_t:
input = F.interpolate(input, (h_t, w_t), mode='bilinear', align_corners=True)
target = target.long()
dice = dice_loss(input, target)
focal = focal_loss(input, target, alpha=self.focal_weight, reduction='mean')
return dice, focal
@MODELS.register_module()
class ErrorLoss(nn.Module):
"""Error loss (pixel-wise)"""
def __init__(self, loss_type, focal_weight):
super(ErrorLoss, self).__init__()
self.name = 'Error'
self.criterion_dice = GeneralizedSoftDiceLoss()
self.criterion_bce = nn.BCELoss()
self.loss_type = loss_type
self.focal_weight = focal_weight
def forward(self, input, target, coarse_prediction, min_depth, max_depth):
_, _, h_i, w_i = input.shape
_, _, h_c, w_c = coarse_prediction.shape
_, _, h_t, w_t = target.shape
if h_i != h_t or w_i != w_t:
input = F.interpolate(input, (h_t, w_t), mode='bilinear', align_corners=True)
if h_c != h_t or w_c != w_t:
coarse_prediction = F.interpolate(coarse_prediction, (h_t, w_t), mode='bilinear')
if self.loss_type == 'incoh':
gt_mask = get_incoherent_mask(target, shape=(h_i, w_i), min_depth=min_depth, max_depth=max_depth)
elif self.loss_type == 'incoh+grad':
gt_mask = get_incoherent_grad_error_mask(target, coarse_prediction, shape=(h_i, w_i), min_depth=min_depth, max_depth=max_depth)
elif self.loss_type == 'incoh+grad+depth':
gt_mask = get_incoherent_grad_value_error_mask(target, coarse_prediction, shape=(h_i, w_i), min_depth=min_depth, max_depth=max_depth)
else:
raise NotImplementedError
dice = dice_loss(input, gt_mask)
# focal = focal_loss(input, gt_mask, alpha=0.5, reduction='mean')
focal = focal_loss(input, gt_mask, alpha=self.focal_weight, reduction='mean')
return dice, focal, gt_mask
def ind2sub(idx, w):
# r = idx // cols
# c = idx - r * cols
# return r, c
row = idx // w
col = idx % w
return row, col
def sub2ind(r, c, cols):
idx = r * cols + c
return idx
import matplotlib.pyplot as plt
######################################################
# EdgeguidedRankingLoss
#####################################################
@MODELS.register_module()
class EdgeguidedRankingLoss(nn.Module):
def __init__(
self,
point_pairs=10000,
sigma=0.03,
alpha=1.0,
mask_value=-1e-8,
reweight_target=False,
only_missing_area=False,
min_depth=-1e-3,
max_depth=80,
missing_value=-99,
random_direct=True):
super(EdgeguidedRankingLoss, self).__init__()
self.point_pairs = point_pairs # number of point pairs
self.sigma = sigma # used for determining the ordinal relationship between a selected pair
self.alpha = alpha # used for balancing the effect of = and (<,>)
self.mask_value = mask_value
#self.regularization_loss = GradientLoss(scales=4)
self.reweight_target = reweight_target
self.only_missing_area = only_missing_area
self.min_depth = min_depth
self.max_depth = max_depth
self.missing_value = missing_value
self.random_direct = random_direct
self.idx = 0
self.idx_inner = 0
def getEdge(self, images):
n,c,h,w = images.size()
a = torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).cuda().view((1,1,3,3)).repeat(1, 1, 1, 1)
b = torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).cuda().view((1,1,3,3)).repeat(1, 1, 1, 1)
if c == 3:
gradient_x = F.conv2d(images[:,0,:,:].unsqueeze(1), a)
gradient_y = F.conv2d(images[:,0,:,:].unsqueeze(1), b)
else:
gradient_x = F.conv2d(images, a)
gradient_y = F.conv2d(images, b)
edges = torch.sqrt(torch.pow(gradient_x,2)+ torch.pow(gradient_y,2))
edges = F.pad(edges, (1,1,1,1), "constant", 0)
thetas = torch.atan2(gradient_y, gradient_x)
thetas = F.pad(thetas, (1,1,1,1), "constant", 0)
return edges, thetas
def edgeGuidedSampling(self, inputs, targets, edges_img, thetas_img, missing_mask, depth_gt, strict_mask):
# find edges
edges_max = edges_img.max()
edges_mask = edges_img.ge(edges_max*0.1)
edges_mask = torch.logical_and(edges_mask, strict_mask) # 1 edge, 2 strict mask
if self.only_missing_area:
# edges_mask = torch.logical_and(edges_mask, missing_mask) # base anchor: 1 missing values (0) and 2 edge masks and within 3 strict mask
edges_mask = missing_mask
edges_loc = edges_mask.nonzero()
minlen = edges_loc.shape[0]
if minlen == 0:
return torch.Tensor([]), torch.Tensor([]), torch.Tensor([]), torch.Tensor([]), 0
# find anchor points (i.e, edge points)
sample_num = self.point_pairs
sample_index = torch.randint(0, minlen, (sample_num,), dtype=torch.long).cuda()
sample_h, sample_w = edges_loc[sample_index, 0], edges_loc[sample_index, 1]
theta_anchors = thetas_img[sample_h, sample_w]
sidx = edges_loc.shape[0] // 2
# plt.figure()
# plt.imshow(missing_mask.squeeze().cpu().numpy())
# plt.savefig('nfs_scannet/debug_figs/debug_mask_{}.png'.format(self.idx))
# plt.figure()
# plt.imshow(missing_mask.squeeze().cpu().numpy())
# circle = plt.Circle((sample_w[0], sample_h[0]), 0.5, color='r')
# plt.gca().add_patch(circle)
# plt.savefig('nfs_scannet/debug_figs/debug_anchor_{}.png'.format(self.idx))
## compute the coordinates of 4-points, distances are from [-30, 30]
distance_matrix = torch.randint(2, 31, (4,sample_num)).cuda()
pos_or_neg = torch.ones(4, sample_num).cuda()
pos_or_neg[:2,:] = -pos_or_neg[:2,:]
distance_matrix = distance_matrix.float() * pos_or_neg
p = random.random()
# theta_anchors = theta_anchors + math.pi / 2
# # Normalize the angle to be between -pi and pi
# theta_anchors = (theta_anchors + math.pi) % (2 * math.pi) - math.pi
# col = sample_w.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.sin(theta_anchors).unsqueeze(0)).long()
# row = sample_h.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.cos(theta_anchors).unsqueeze(0)).long()
if self.random_direct:
if p < 0.5:
col = sample_w.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.cos(theta_anchors).unsqueeze(0)).long()
row = sample_h.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.sin(theta_anchors).unsqueeze(0)).long()
else:
theta_anchors = theta_anchors + math.pi / 2
theta_anchors = (theta_anchors + math.pi) % (2 * math.pi) - math.pi
col = sample_w.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.sin(theta_anchors).unsqueeze(0)).long()
row = sample_h.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.cos(theta_anchors).unsqueeze(0)).long()
else:
col = sample_w.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.cos(theta_anchors).unsqueeze(0)).long()
row = sample_h.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.sin(theta_anchors).unsqueeze(0)).long()
# constrain 0=<c<=w, 0<=r<=h
# Note: index should minus 1
w, h = depth_gt.shape[-1], depth_gt.shape[-2]
invalid_mask = (col<0) + (col>w-1) + (row<0) + (row>h-1)
invalid_mask = torch.sum(invalid_mask, dim=0) > 0
col = col[:, torch.logical_not(invalid_mask)]
row = row[:, torch.logical_not(invalid_mask)]
# only use one pair
a = torch.stack([row[0, :], col[0, :]])
b = torch.stack([row[1, :], col[1, :]])
c = torch.stack([row[2, :], col[2, :]])
d = torch.stack([row[3, :], col[3, :]])
if self.only_missing_area:
valid_check_a_strict = strict_mask[a[0, :], a[1, :]] == True
valid_check_a_missing = missing_mask[a[0, :], a[1, :]] == True
valid_check_b_strict = strict_mask[b[0, :], b[1, :]] == True
valid_check_b_missing = missing_mask[b[0, :], b[1, :]] == True
valid_check_c_strict = strict_mask[c[0, :], c[1, :]] == True
valid_check_c_missing = missing_mask[c[0, :], c[1, :]] == True
valid_check_d_strict = strict_mask[d[0, :], d[1, :]] == True
valid_check_d_missing = missing_mask[d[0, :], d[1, :]] == True
valid_mask_ab = torch.logical_not(torch.logical_and(valid_check_a_strict, valid_check_b_strict))
valid_mask_bc = torch.logical_not(torch.logical_and(valid_check_b_strict, valid_check_c_strict))
valid_mask_cd = torch.logical_not(torch.logical_and(valid_check_c_strict, valid_check_d_strict))
valid_mask = torch.logical_and(valid_mask_ab, valid_mask_bc)
valid_mask = torch.logical_and(valid_mask, valid_mask_cd)
# valid_check_a_missing = missing_mask[a[0, :], a[1, :]] == True
# valid_check_b_missing = missing_mask[b[0, :], b[1, :]] == True
# valid_check_c_missing = missing_mask[c[0, :], c[1, :]] == True
# valid_check_d_missing = missing_mask[d[0, :], d[1, :]] == True
# valid_mask = torch.logical_and(valid_check_a_missing, valid_check_b_missing)
# valid_mask = torch.logical_and(valid_mask, valid_check_c_missing)
# valid_mask = torch.logical_and(valid_mask, valid_check_d_missing)
a = a[:, valid_mask]
b = b[:, valid_mask]
c = c[:, valid_mask]
d = d[:, valid_mask]
if a.numel() == 0 or b.numel() == 0 or c.numel() == 0 or d.numel() == 0:
return torch.Tensor([]), torch.Tensor([]), torch.Tensor([]), torch.Tensor([]), 0
# sidx = 0
# plt.figure()
# plt.imshow(depth_gt.squeeze().cpu().numpy())
# circle = plt.Circle((a[1][sidx], a[0][sidx]), 3, color='r')
# plt.gca().add_patch(circle)
# circle = plt.Circle((b[1][sidx], b[0][sidx]), 3, color='r')
# plt.gca().add_patch(circle)
# plt.savefig('nfs_scannet/debug_figs/debug_{}_{}.png'.format(self.idx, self.idx_inner))
# self.idx_inner += 1
A = torch.cat((a,b,c), 1)
B = torch.cat((b,c,d), 1)
sumple_num = A.shape[1]
inputs_A = inputs[A[0, :], A[1, :]]
inputs_B = inputs[B[0, :], B[1, :]]
targets_A = targets[A[0, :], A[1, :]]
targets_B = targets[B[0, :], B[1, :]]
return inputs_A, inputs_B, targets_A, targets_B, sumple_num
def randomSampling(self, inputs, targets, missing_part, valid_part, sample_num):
# Apply masks to get the valid indices for missing and valid parts
missing_indices = torch.nonzero(missing_part.float()).squeeze()
valid_indices = torch.nonzero(valid_part.float()).squeeze()
# Ensure that we have enough points to sample from
sample_num = min(sample_num, len(missing_indices), len(valid_indices))
# Shuffle and sample indices from the missing and valid parts
shuffle_missing_indices = torch.randperm(len(missing_indices))[:sample_num].cuda()
shuffle_valid_indices = torch.randperm(len(valid_indices))[:sample_num].cuda()
# Select the sampled points for inputs and targets based on the shuffled indices
inputs_A = inputs[missing_indices[shuffle_missing_indices]]
inputs_B = inputs[valid_indices[shuffle_valid_indices]]
targets_A = targets[missing_indices[shuffle_missing_indices]]
targets_B = targets[valid_indices[shuffle_valid_indices]]
return inputs_A, inputs_B, targets_A, targets_B, sample_num
def forward(self, inputs, targets, images, depth_gt=None, interpolate=True):
if interpolate:
targets = F.interpolate(targets, inputs.shape[-2:], mode='bilinear', align_corners=True)
images = F.interpolate(images, inputs.shape[-2:], mode='bilinear', align_corners=True)
depth_gt = F.interpolate(depth_gt, inputs.shape[-2:], mode='bilinear', align_corners=True)
n, _, _, _= inputs.size()
# strict_mask is a range mask
strict_mask = torch.logical_and(depth_gt>self.min_depth, depth_gt<self.max_depth)
# remove pl out of range pixels
invalid_pl_mask = targets == 80
strict_mask = torch.logical_and(strict_mask, torch.logical_not(invalid_pl_mask))
if self.only_missing_area:
masks = depth_gt == self.missing_value # only consider missing values in semi loss
else:
masks = torch.ones_like(strict_mask).bool()
edges_img, thetas_img = self.getEdge(images)
# initialization
loss = torch.DoubleTensor([0.0]).cuda()
sample_num_sum = torch.tensor([0.0])
for i in range(n):
# Edge-Guided sampling
inputs_A, inputs_B, targets_A, targets_B, sample_num_e = self.edgeGuidedSampling(
inputs[i].squeeze(),
targets[i].squeeze(),
edges_img[i].squeeze(),
thetas_img[i].squeeze(),
masks[i].squeeze(),
depth_gt[i].squeeze(),
strict_mask[i].squeeze())
sample_num_sum += sample_num_e
if sample_num_e == 0:
continue
if len(inputs_A) == 0 or len(inputs_B) == 0 or len(targets_A) == 0 or len(targets_B) == 0:
continue
# try:
# inputs_A_r, inputs_B_r, targets_A_r, targets_B_r, sample_num_r = self.randomSampling(
# inputs[i].squeeze().view(-1),
# targets[i].squeeze().view(-1),
# masks[i].squeeze().view(-1),
# strict_mask[i].squeeze().view(-1),
# sample_num_e)
# sample_num_sum += sample_num_r
# # Combine EGS + RS
# inputs_A = torch.cat((inputs_A, inputs_A_r), 0)
# inputs_B = torch.cat((inputs_B, inputs_B_r), 0)
# targets_A = torch.cat((targets_A, targets_A_r), 0)
# targets_B = torch.cat((targets_B, targets_B_r), 0)
# except TypeError as e:
# print_log(e, logger='current')
# GT ordinal relationship
target_ratio = torch.div(targets_A+1e-6, targets_B+1e-6)
target_weight = torch.abs(targets_A - targets_B) / (torch.max(torch.abs(targets_A - targets_B)) + 1e-6) # avoid nan
target_weight = torch.exp(target_weight)
# target_weight = torch.abs(targets_A - targets_B)
# target_weight = torch.exp(target_weight)
mask_eq = target_ratio.lt(1.0 + self.sigma) * target_ratio.gt(1.0/(1.0+self.sigma))
labels = torch.zeros_like(target_ratio)
labels[target_ratio.ge(1.0 + self.sigma)] = 1
labels[target_ratio.le(1.0/(1.0+self.sigma))] = -1
if self.reweight_target:
equal_loss = (inputs_A - inputs_B).pow(2) * mask_eq.double() # can also use the weight
else:
equal_loss = (inputs_A - inputs_B).pow(2) / target_weight * mask_eq.double() # can also use the weight
if self.reweight_target:
unequal_loss = torch.log(1 + torch.exp((-inputs_A + inputs_B) / target_weight * labels)) * (~mask_eq).double()
else:
unequal_loss = torch.log(1 + torch.exp((-inputs_A + inputs_B) * labels)) * (~mask_eq).double()
# Please comment the regularization term if you don't want to use the multi-scale gradient matching loss !!!
loss = loss + self.alpha * equal_loss.mean() + 1.0 * unequal_loss.mean() #+ 0.2 * regularization_loss.double()
self.idx += 1
return loss[0].float()/n, float(sample_num_sum/n)
def compute_scale_and_shift(prediction, target, mask):
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
a_00 = torch.sum(mask * prediction * prediction, (1, 2))
a_01 = torch.sum(mask * prediction, (1, 2))
a_11 = torch.sum(mask, (1, 2))
# right hand side: b = [b_0, b_1]
b_0 = torch.sum(mask * prediction * target, (1, 2))
b_1 = torch.sum(mask * target, (1, 2))
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
x_0 = torch.zeros_like(b_0)
x_1 = torch.zeros_like(b_1)
det = a_00 * a_11 - a_01 * a_01
# A needs to be a positive definite matrix.
valid = det > 0
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid]
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid]
return x_0, x_1
@MODELS.register_module()
class ScaleAndShiftInvariantLoss(nn.Module):
def __init__(self, **kargs):
super().__init__()
self.name = "SSILoss"
def forward(self, prediction, target, mask, interpolate=True, return_interpolated=False):
_, _, h_i, w_i = prediction.shape
_, _, h_t, w_t = target.shape
if h_i != h_t or w_i != w_t:
prediction = F.interpolate(prediction, (h_t, w_t), mode='bilinear', align_corners=True)
prediction, target, mask = prediction.squeeze(), target.squeeze(), mask.squeeze()
if torch.sum(mask) <= 1:
print_log("torch.sum(mask) <= 1, hack to skip avoiding bugs", logger='current')
return input * 0.0
assert prediction.shape == target.shape, f"Shape mismatch: Expected same shape but got {prediction.shape} and {target.shape}."
scale, shift = compute_scale_and_shift(prediction, target, mask)
scaled_prediction = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1)
loss = nn.functional.l1_loss(scaled_prediction[mask], target[mask])
return loss
@MODELS.register_module()
class ExistLoss(nn.Module):
"""ExistLoss loss (pixel-wise)"""
def __init__(self, reweight_target):
super(ExistLoss, self).__init__()
self.name = 'ExistLoss'
self.reweight_target = reweight_target
def forward(self, pred_grad, pl_grad, pseudo_edge_area):
pred_grad_edge = pred_grad[pseudo_edge_area]
pl_grad_edge = pl_grad[pseudo_edge_area]
pl_grad_weight = torch.exp(pl_grad_edge)
if self.reweight_target:
loss = torch.exp(-pred_grad_edge / pl_grad_weight).mean()
else:
loss = torch.exp(-pred_grad_edge).mean()
return loss
|