File size: 21,682 Bytes
1f418ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Zhenyu Li

import itertools

import math
import copy
import torch
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from mmengine import print_log
from mmengine.config import ConfigDict
from torchvision.ops import roi_align as torch_roi_align
from huggingface_hub import PyTorchModelHubMixin
from transformers import PretrainedConfig

from estimator.registry import MODELS
from estimator.models import build_model
from estimator.models.baseline_pretrain import BaselinePretrain
from estimator.models.utils import generatemask

from zoedepth.models.zoedepth import ZoeDepth
from zoedepth.models.layers.attractor import AttractorLayer, AttractorLayerUnnormed
from zoedepth.models.layers.dist_layers import ConditionalLogBinomial
from zoedepth.models.layers.localbins_layers import (Projector, SeedBinRegressor, SeedBinRegressorUnnormed)
from zoedepth.models.base_models.midas import Resize as ResizeZoe
from depth_anything.transform import Resize as ResizeDA



@MODELS.register_module()
class PatchFusion(BaselinePretrain, PyTorchModelHubMixin):
    def __init__(
        self, 
        config,):
        """ZoeDepth model
        """
        nn.Module.__init__(self)
        
        if isinstance(config, ConfigDict):
            # convert a ConfigDict to a PretrainedConfig for hf saving
            config = PretrainedConfig.from_dict(config.to_dict())
            config.load_branch = True
        else:
            # used when loading patchfusion from hf model space
            config = PretrainedConfig.from_dict(ConfigDict(**config).to_dict())
            config.load_branch = False
            config.coarse_branch.pretrained_resource = None
            config.fine_branch.pretrained_resource = None
            
        self.config = config
        
        self.min_depth = config.min_depth
        self.max_depth = config.max_depth
        
        self.patch_process_shape = config.patch_process_shape
        self.tile_cfg = self.prepare_tile_cfg(config.image_raw_shape, config.patch_split_num)
        
        self.coarse_branch_cfg = config.coarse_branch
        if config.coarse_branch.type == 'ZoeDepth':
            self.coarse_branch = ZoeDepth.build(**config.coarse_branch)
            self.resizer = ResizeZoe(config.patch_process_shape[1], config.patch_process_shape[0], keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")
        elif config.coarse_branch.type == 'DA-ZoeDepth':
            self.coarse_branch = ZoeDepth.build(**config.coarse_branch)
            self.resizer = ResizeDA(config.patch_process_shape[1], config.patch_process_shape[0], keep_aspect_ratio=False, ensure_multiple_of=14, resize_method="minimal")
        else:
            raise NotImplementedError
        
        if config.fine_branch.type == 'ZoeDepth':
            self.fine_branch = ZoeDepth.build(**config.fine_branch)
        elif config.fine_branch.type == 'DA-ZoeDepth':
            self.fine_branch = ZoeDepth.build(**config.fine_branch)
        else:
            raise NotImplementedError
        
        if config.load_branch:
            print_log("Loading coarse_branch from {}".format(config.pretrain_model[0]), logger='current') 
            print_log(self.coarse_branch.load_state_dict(torch.load(config.pretrain_model[0], map_location='cpu')['model_state_dict'], strict=True), logger='current') # coarse ckp
            print_log("Loading fine_branch from {}".format(config.pretrain_model[1]), logger='current')
            print_log(self.fine_branch.load_state_dict(torch.load(config.pretrain_model[1], map_location='cpu')['model_state_dict'], strict=True), logger='current')
        
        # freeze all these parameters
        for param in self.coarse_branch.parameters():
            param.requires_grad = False
        for param in self.fine_branch.parameters():
            param.requires_grad = False
                
        self.sigloss = build_model(config.sigloss)
        
        N_MIDAS_OUT = 32
        btlnck_features = self.fine_branch.core.output_channels[0]
        self.fusion_conv_list = nn.ModuleList()
        for i in range(6):
            if i == 5:
                layer = nn.Conv2d(N_MIDAS_OUT * 2, N_MIDAS_OUT, 3, 1, 1)
            else:
                layer = nn.Conv2d(btlnck_features * 2, btlnck_features, 3, 1, 1)
            self.fusion_conv_list.append(layer)

        self.guided_fusion = build_model(config.guided_fusion)
        
        # NOTE: a decoder head
        if self.coarse_branch_cfg.bin_centers_type == "normed":
            SeedBinRegressorLayer = SeedBinRegressor
            Attractor = AttractorLayer
        elif self.coarse_branch_cfg.bin_centers_type == "softplus": # default
            SeedBinRegressorLayer = SeedBinRegressorUnnormed
            Attractor = AttractorLayerUnnormed
        elif self.coarse_branch_cfg.bin_centers_type == "hybrid1":
            SeedBinRegressorLayer = SeedBinRegressor
            Attractor = AttractorLayerUnnormed
        elif self.coarse_branch_cfg.bin_centers_type == "hybrid2":
            SeedBinRegressorLayer = SeedBinRegressorUnnormed
            Attractor = AttractorLayer
        else:
            raise ValueError(
                "bin_centers_type should be one of 'normed', 'softplus', 'hybrid1', 'hybrid2'")
        
        N_MIDAS_OUT = 32
        btlnck_features = self.fine_branch.core.output_channels[0]
        num_out_features = self.fine_branch.core.output_channels[1:] # all of them are the same

        self.seed_bin_regressor = SeedBinRegressorLayer(
            btlnck_features, n_bins=self.coarse_branch_cfg.n_bins, min_depth=config.min_depth, max_depth=config.max_depth)
        self.seed_projector = Projector(btlnck_features, self.coarse_branch_cfg.bin_embedding_dim)
        self.projectors = nn.ModuleList([
            Projector(num_out, self.coarse_branch_cfg.bin_embedding_dim)
            for num_out in num_out_features
        ])
        # 1000, 2, inv, mean
        self.attractors = nn.ModuleList([
            Attractor(self.coarse_branch_cfg.bin_embedding_dim, self.coarse_branch_cfg.n_bins, n_attractors=self.coarse_branch_cfg.n_attractors[i], min_depth=config.min_depth, max_depth=config.max_depth,
                      alpha=self.coarse_branch_cfg.attractor_alpha, gamma=self.coarse_branch_cfg.attractor_gamma, kind=self.coarse_branch_cfg.attractor_kind, attractor_type=self.coarse_branch_cfg.attractor_type)
            for i in range(len(num_out_features))
        ])
        
        last_in = N_MIDAS_OUT + 1  # +1 for relative depth

        # use log binomial instead of softmax
        self.conditional_log_binomial = ConditionalLogBinomial(
            last_in, self.coarse_branch_cfg.bin_embedding_dim, n_classes=self.coarse_branch_cfg.n_bins, min_temp=self.coarse_branch_cfg.min_temp, max_temp=self.coarse_branch_cfg.max_temp)
        
        # NOTE: consistency training
        self.consistency_training = False
    
      
    def load_dict(self, dict):
        return self.load_state_dict(dict, strict=False)
                
    def get_save_dict(self):
        current_model_dict = self.state_dict()
        save_state_dict = {}
        for k, v in current_model_dict.items():
            if 'coarse_branch' in k or 'fine_branch' in k:
                pass
            else:
                save_state_dict[k] = v
        return save_state_dict
    
    def coarse_forward(self, image_lr):
        with torch.no_grad():
            if self.coarse_branch.training:
                self.coarse_branch.eval()
                    
            deep_model_output_dict = self.coarse_branch(image_lr, return_final_centers=True)
            deep_features = deep_model_output_dict['temp_features'] # x_d0 1/128, x_blocks_feat_0 1/64, x_blocks_feat_1 1/32, x_blocks_feat_2 1/16, x_blocks_feat_3 1/8, midas_final_feat 1/4 [based on 384x4, 512x4]
            coarse_prediction = deep_model_output_dict['metric_depth']
            
            coarse_features = [
                deep_features['x_d0'],
                deep_features['x_blocks_feat_0'],
                deep_features['x_blocks_feat_1'],
                deep_features['x_blocks_feat_2'],
                deep_features['x_blocks_feat_3'],
                deep_features['midas_final_feat']] # bs, c, h, w

            return coarse_prediction, coarse_features
    
    def fine_forward(self, image_hr_crop):
        with torch.no_grad():
            if self.fine_branch.training:
                self.fine_branch.eval()
            
            deep_model_output_dict = self.fine_branch(image_hr_crop, return_final_centers=True)
            deep_features = deep_model_output_dict['temp_features'] # x_d0 1/128, x_blocks_feat_0 1/64, x_blocks_feat_1 1/32, x_blocks_feat_2 1/16, x_blocks_feat_3 1/8, midas_final_feat 1/4 [based on 384x4, 512x4]
            fine_prediction = deep_model_output_dict['metric_depth']
            
            fine_features = [
                deep_features['x_d0'],
                deep_features['x_blocks_feat_0'],
                deep_features['x_blocks_feat_1'],
                deep_features['x_blocks_feat_2'],
                deep_features['x_blocks_feat_3'],
                deep_features['midas_final_feat']] # bs, c, h, w
            
            return fine_prediction, fine_features
    
    def coarse_postprocess_train(self, coarse_prediction, coarse_features, bboxs, bboxs_feat):

        coarse_features_patch_area = []
        for idx, feat in enumerate(coarse_features):
            bs, _, h, w = feat.shape
            cur_lvl_feat = torch_roi_align(feat, bboxs_feat, (h, w), h/self.patch_process_shape[0], aligned=True)
            coarse_features_patch_area.append(cur_lvl_feat)

        coarse_prediction_roi = torch_roi_align(coarse_prediction, bboxs_feat, coarse_prediction.shape[-2:], coarse_prediction.shape[-2]/self.patch_process_shape[0], aligned=True)

        return coarse_prediction_roi, coarse_features_patch_area
    

    def coarse_postprocess_test(self, coarse_prediction, coarse_features, bboxs, bboxs_feat):
        patch_num = bboxs_feat.shape[0]

        coarse_features_patch_area = []
        for idx, feat in enumerate(coarse_features):
            bs, _, h, w = feat.shape
            feat_extend = feat.repeat(patch_num, 1, 1, 1)
            cur_lvl_feat = torch_roi_align(feat_extend, bboxs_feat, (h, w), h/self.patch_process_shape[0], aligned=True)
            coarse_features_patch_area.append(cur_lvl_feat)
        
        coarse_prediction = coarse_prediction.repeat(patch_num, 1, 1, 1)
        coarse_prediction_roi = torch_roi_align(coarse_prediction, bboxs_feat, coarse_prediction.shape[-2:], coarse_prediction.shape[-2]/self.patch_process_shape[0], aligned=True)

        return_dict = {
            'coarse_depth_roi': coarse_prediction_roi,
            'coarse_feats_roi': coarse_features_patch_area}
        
        return return_dict
    
    def fusion_forward(self, fine_depth_pred, crop_input, coarse_model_midas_enc_feats, fine_model_midas_enc_feats, bbox_feat, coarse_depth_roi=None, coarse_feats_roi=None):
        feat_cat_list = []
        feat_plus_list = []
        
        for l_i, (f_ca, f_c_roi, f_f) in enumerate(zip(coarse_model_midas_enc_feats, coarse_feats_roi, fine_model_midas_enc_feats)):
            feat_cat = self.fusion_conv_list[l_i](torch.cat([f_c_roi, f_f], dim=1))
            feat_plus = f_c_roi + f_f
            feat_cat_list.append(feat_cat)
            feat_plus_list.append(feat_plus)
        
        input_tensor = torch.cat([coarse_depth_roi, fine_depth_pred, crop_input], dim=1)
        
        # HACK: hack for depth-anything
        # if self.coarse_branch_cfg.type == 'DA-ZoeDepth':
        #     input_tensor = F.interpolate(input_tensor, size=(448, 592), mode='bilinear', align_corners=True)
            
        output = self.guided_fusion(
            input_tensor = input_tensor,
            guide_plus = feat_plus_list,
            guide_cat = feat_cat_list,
            bbox = bbox_feat,
            fine_feat_crop = fine_model_midas_enc_feats,
            coarse_feat_whole = coarse_model_midas_enc_feats,
            coarse_feat_crop = coarse_feats_roi,
            coarse_feat_whole_hack=None)[::-1] # low -> high
            
        x_blocks = output
        x = x_blocks[0]
        x_blocks = x_blocks[1:]

        proj_feat_list = []
        if self.consistency_training:
            if self.consistency_target == 'unet_feat':
                proj_feat_list = []
                for idx, feat in enumerate(output):
                    proj_feat = self.consistency_projs[idx](feat)
                    proj_feat_list.append(proj_feat)

        # NOTE: below is ZoeDepth implementation
        last = x_blocks[-1] # have already been fused in x_blocks
        bs, c, h, w = last.shape
        rel_cond = torch.zeros((bs, 1, h, w), device=last.device)
        _, seed_b_centers = self.seed_bin_regressor(x)

        if self.coarse_branch_cfg.bin_centers_type == 'normed' or self.coarse_branch_cfg.bin_centers_type == 'hybrid2':
            b_prev = (seed_b_centers - self.min_depth) / \
                (self.max_depth - self.min_depth)
        else:
            b_prev = seed_b_centers

        prev_b_embedding = self.seed_projector(x)

        # unroll this loop for better performance
        for idx, (projector, attractor, x) in enumerate(zip(self.projectors, self.attractors, x_blocks)):
            b_embedding = projector(x)
            b, b_centers = attractor(
                b_embedding, b_prev, prev_b_embedding, interpolate=True)
            b_prev = b.clone()
            prev_b_embedding = b_embedding.clone()

        if self.consistency_training:
            if self.consistency_target == 'final_feat':
                proj_feat_1 = self.consistency_projs[0](b_centers)
                proj_feat_2 = self.consistency_projs[1](last)
                proj_feat_3 = self.consistency_projs[2](b_embedding)
                proj_feat_list = [proj_feat_1, proj_feat_2, proj_feat_3]

        rel_cond = nn.functional.interpolate(
            rel_cond, size=last.shape[2:], mode='bilinear', align_corners=True)
        last = torch.cat([last, rel_cond], dim=1) # + self.coarse_depth_proj(whole_depth_roi_pred) + self.fine_depth_proj(fine_depth_pred)
        b_embedding = nn.functional.interpolate(
            b_embedding, last.shape[-2:], mode='bilinear', align_corners=True)
        # till here, we have features (attached with a relative depth prediction) and embeddings
        # post process
        # final_pred = out * self.blur_mask + whole_depth_roi_pred * (1-self.blur_mask)
        # out = F.interpolate(out, (540, 960), mode='bilinear', align_corners=True)
        x = self.conditional_log_binomial(last, b_embedding)
        b_centers = nn.functional.interpolate(
            b_centers, x.shape[-2:], mode='bilinear', align_corners=True)

        out = torch.sum(x * b_centers, dim=1, keepdim=True)
        return out, proj_feat_list
    
    
    def infer_forward(self, imgs_crop, bbox_feat_forward, tile_temp, coarse_temp_dict):
        
        fine_prediction, fine_features = self.fine_forward(imgs_crop)
        
        depth_prediction, consistency_target = \
            self.fusion_forward(
                fine_prediction, 
                imgs_crop, 
                tile_temp['coarse_features'], 
                fine_features, 
                bbox_feat_forward,
                **coarse_temp_dict)
            
        return depth_prediction
    
    
    def forward(
        self,
        mode,
        image_lr,
        image_hr,
        depth_gt=None,
        crops_image_hr=None,
        crop_depths=None,
        bboxs=None,
        tile_cfg=None,
        cai_mode='m1',
        process_num=4):
        
        if mode == 'train':
            bboxs_feat_factor = torch.tensor([
                1 / self.tile_cfg['image_raw_shape'][1] * self.patch_process_shape[1], 
                1 / self.tile_cfg['image_raw_shape'][0] * self.patch_process_shape[0], 
                1 / self.tile_cfg['image_raw_shape'][1] * self.patch_process_shape[1], 
                1 / self.tile_cfg['image_raw_shape'][0] * self.patch_process_shape[0]], device=bboxs.device).unsqueeze(dim=0)
            bboxs_feat = bboxs * bboxs_feat_factor
            inds = torch.arange(bboxs.shape[0]).to(bboxs.device).unsqueeze(dim=-1)
            bboxs_feat = torch.cat((inds, bboxs_feat), dim=-1)
        
            coarse_prediction, coarse_features = self.coarse_forward(image_lr)
            fine_prediction, fine_features = self.fine_forward(crops_image_hr)
            coarse_prediction_roi, coarse_features_patch_area = self.coarse_postprocess_train(coarse_prediction, coarse_features, bboxs, bboxs_feat)

            depth_prediction, consistency_target = self.fusion_forward(
                fine_prediction, 
                crops_image_hr, 
                coarse_features, 
                fine_features, 
                bboxs_feat,
                coarse_depth_roi=coarse_prediction_roi,
                coarse_feats_roi=coarse_features_patch_area,)

            loss_dict = {}
            loss_dict['sig_loss'] = self.sigloss(depth_prediction, crop_depths, self.min_depth, self.max_depth)
            loss_dict['total_loss'] = loss_dict['sig_loss']
            
            return loss_dict, {'rgb': crops_image_hr, 'depth_pred': depth_prediction, 'depth_gt': crop_depths}
        
        else:
            if tile_cfg is None:
                tile_cfg = self.tile_cfg
            else:
                tile_cfg = self.prepare_tile_cfg(tile_cfg['image_raw_shape'], tile_cfg['patch_split_num'])
            
            assert image_hr.shape[0] == 1
            
            coarse_prediction, coarse_features = self.coarse_forward(image_lr)
            
            tile_temp = {
                'coarse_prediction': coarse_prediction,
                'coarse_features': coarse_features,}
            
            blur_mask = generatemask((self.patch_process_shape[0], self.patch_process_shape[1])) + 1e-3
            blur_mask = torch.tensor(blur_mask, device=image_hr.device)
            avg_depth_map = self.regular_tile(
                offset=[0, 0], 
                offset_process=[0, 0], 
                image_hr=image_hr[0], 
                init_flag=True, 
                tile_temp=tile_temp, 
                blur_mask=blur_mask,
                tile_cfg=tile_cfg,
                process_num=process_num)

            if cai_mode == 'm2' or cai_mode[0] == 'r':
                avg_depth_map = self.regular_tile(
                    offset=[0, tile_cfg['patch_raw_shape'][1]//2], 
                    offset_process=[0, self.patch_process_shape[1]//2], 
                    image_hr=image_hr[0], init_flag=False, tile_temp=tile_temp, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
                avg_depth_map = self.regular_tile(
                    offset=[tile_cfg['patch_raw_shape'][0]//2, 0],
                    offset_process=[self.patch_process_shape[0]//2, 0], 
                    image_hr=image_hr[0], init_flag=False, tile_temp=tile_temp, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
                avg_depth_map = self.regular_tile(
                    offset=[tile_cfg['patch_raw_shape'][0]//2, tile_cfg['patch_raw_shape'][1]//2],
                    offset_process=[self.patch_process_shape[0]//2, self.patch_process_shape[1]//2], 
                    init_flag=False, image_hr=image_hr[0], tile_temp=tile_temp, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)
                
            if cai_mode[0] == 'r':
                blur_mask = generatemask((tile_cfg['patch_raw_shape'][0], tile_cfg['patch_raw_shape'][1])) + 1e-3
                blur_mask = torch.tensor(blur_mask, device=image_hr.device)
                avg_depth_map.resize(tile_cfg['image_raw_shape'])
                patch_num = int(cai_mode[1:]) // process_num
                for i in range(patch_num):
                    avg_depth_map = self.random_tile(
                        image_hr=image_hr[0], tile_temp=tile_temp, blur_mask=blur_mask, avg_depth_map=avg_depth_map, tile_cfg=tile_cfg, process_num=process_num)

            depth = avg_depth_map.average_map
            depth = depth.unsqueeze(dim=0).unsqueeze(dim=0)

            return depth, {'rgb': image_lr, 'depth_pred': depth, 'depth_gt': depth_gt}