PatchFusion / configs /patchfusion_zoedepth /zoedepth_patchfusion_u4k.py
Zhyever
refactor
1f418ff
raw
history blame
2.9 kB
_base_ = [
'../_base_/datasets/u4k.py',
'../_base_/datasets/general_dataset.py',
'../_base_/run_time.py'
]
min_depth=1e-3
max_depth=80
zoe_depth_config=dict(
type='ZoeDepth',
min_depth=min_depth,
max_depth=max_depth,
# some important params
midas_model_type='DPT_BEiT_L_384',
pretrained_resource='local::./work_dir/ZoeDepthv1.pt',
use_pretrained_midas=True,
train_midas=True,
freeze_midas_bn=True,
do_resize=False, # do not resize image in midas
# default settings
attractor_alpha=1000,
attractor_gamma=2,
attractor_kind='mean',
attractor_type='inv',
aug=True,
bin_centers_type='softplus',
bin_embedding_dim=128,
clip_grad=0.1,
dataset='nyu',
distributed=True,
force_keep_ar=True,
gpu='NULL',
img_size=[384, 512],
inverse_midas=False,
log_images_every=0.1,
max_temp=50.0,
max_translation=100,
memory_efficient=True,
min_temp=0.0212,
model='zoedepth',
n_attractors=[16, 8, 4, 1],
n_bins=64,
name='ZoeDepth',
notes='',
output_distribution='logbinomial',
prefetch=False,
print_losses=False,
project='ZoeDepth',
random_crop=False,
random_translate=False,
root='.',
save_dir='',
shared_dict='NULL',
tags='',
translate_prob=0.2,
uid='NULL',
use_amp=False,
use_shared_dict=False,
validate_every=0.25,
version_name='v1',
workers=16,
)
model=dict(
type='PatchFusion',
config=dict(
image_raw_shape=(2160, 3840),
patch_split_num=(4, 4),
patch_process_shape=(384, 512),
min_depth=min_depth,
max_depth=max_depth,
load_branch=True,
pretrain_model=['./work_dir/zoedepth_u4k/coarse_pretrain/checkpoint_24.pth', './work_dir/zoedepth_u4k/fine_pretrain/checkpoint_24.pth'], # coarse, fine
coarse_branch=zoe_depth_config,
fine_branch=zoe_depth_config,
guided_fusion=dict(
type='GuidedFusionPatchFusion',
n_channels=5,
g2l=True,),
sigloss=dict(type='SILogLoss')))
collect_input_args=['image_lr', 'crops_image_hr', 'depth_gt', 'crop_depths', 'bboxs', 'image_hr']
project='patchfusion'
train_cfg=dict(max_epochs=16, val_interval=2, save_checkpoint_interval=16, log_interval=100, train_log_img_interval=500, val_log_img_interval=50, val_type='epoch_base', eval_start=0)
optim_wrapper=dict(
optimizer=dict(type='AdamW', lr=0.0001, weight_decay=0.001),
clip_grad=dict(type='norm', max_norm=0.1, norm_type=2), # norm clip
paramwise_cfg=dict(
bypass_duplicate=True,
custom_keys={
}))
param_scheduler=dict(
cycle_momentum=True,
base_momentum=0.85,
max_momentum=0.95,
div_factor=10,
final_div_factor=10000,
pct_start=0.25,
three_phase=False,)
convert_syncbn=True
find_unused_parameters=True