PatchFusion / zoedepth /data /data_mono.py
Zhenyu Li
update
78ab311
raw
history blame
36.5 kB
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
# This file is partly inspired from BTS (https://github.com/cleinc/bts/blob/master/pytorch/bts_dataloader.py); author: Jin Han Lee
# This file may include modifications from author Zhenyu Li
import itertools
import os
import random
import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.utils.data.distributed
from zoedepth.utils.easydict import EasyDict as edict
from PIL import Image, ImageOps
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from zoedepth.utils.config import change_dataset
from .ddad import get_ddad_loader
from .diml_indoor_test import get_diml_indoor_loader
from .diml_outdoor_test import get_diml_outdoor_loader
from .diode import get_diode_loader
from .hypersim import get_hypersim_loader
from .ibims import get_ibims_loader
from .sun_rgbd_loader import get_sunrgbd_loader
from .vkitti import get_vkitti_loader
from .vkitti2 import get_vkitti2_loader
from .u4k import get_u4k_loader
from .middleburry import get_mid_loader
from .gta import get_gta_loader
from .preprocess import CropParams, get_white_border, get_black_border
import copy
from zoedepth.utils.misc import get_boundaries
from zoedepth.models.base_models.midas import Resize
def _is_pil_image(img):
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
# def preprocessing_transforms(mode, **kwargs):
# return transforms.Compose([
# ToTensor(mode=mode, **kwargs)
# ])
def preprocessing_transforms(mode, sec_stage=False, **kwargs):
return transforms.Compose([
ToTensor(mode=mode, sec_stage=sec_stage, **kwargs)
])
class DepthDataLoader(object):
def __init__(self, config, mode, device='cpu', transform=None, **kwargs):
"""
Data loader for depth datasets
Args:
config (dict): Config dictionary. Refer to utils/config.py
mode (str): "train" or "online_eval"
device (str, optional): Device to load the data on. Defaults to 'cpu'.
transform (torchvision.transforms, optional): Transform to apply to the data. Defaults to None.
"""
self.config = config
if config.dataset == 'ibims':
self.data = get_ibims_loader(config, batch_size=1, num_workers=1)
return
if config.dataset == 'sunrgbd':
self.data = get_sunrgbd_loader(
data_dir_root=config.sunrgbd_root, batch_size=1, num_workers=1)
return
if config.dataset == 'diml_indoor':
self.data = get_diml_indoor_loader(
data_dir_root=config.diml_indoor_root, batch_size=1, num_workers=1)
return
if config.dataset == 'diml_outdoor':
self.data = get_diml_outdoor_loader(
data_dir_root=config.diml_outdoor_root, batch_size=1, num_workers=1)
return
if "diode" in config.dataset:
self.data = get_diode_loader(
config[config.dataset+"_root"], batch_size=1, num_workers=1)
return
if config.dataset == 'hypersim_test':
self.data = get_hypersim_loader(
config.hypersim_test_root, batch_size=1, num_workers=1)
return
if config.dataset == 'vkitti':
self.data = get_vkitti_loader(
config.vkitti_root, batch_size=1, num_workers=1)
return
if config.dataset == 'vkitti2':
self.data = get_vkitti2_loader(
config.vkitti2_root, batch_size=1, num_workers=1)
return
if config.dataset == 'ddad':
self.data = get_ddad_loader(config.ddad_root, resize_shape=(
352, 1216), batch_size=1, num_workers=1)
return
# under construction
if config.dataset == 'u4k':
self.data = get_u4k_loader(config, mode, transform)
return
if config.dataset == 'mid':
self.data = get_mid_loader(config, mode, transform)
return
if config.dataset == 'gta':
self.data = get_gta_loader(config, mode, transform)
return
img_size = self.config.get("img_size", None)
img_size = img_size if self.config.get(
"do_input_resize", False) else None
if transform is None:
# transform = preprocessing_transforms(mode, size=img_size)
transform = preprocessing_transforms(mode, size=img_size, sec_stage=config.get("sec_stage", False))
if mode == 'train':
Dataset = DataLoadPreprocess
self.training_samples = Dataset(
config, mode, transform=transform, device=device)
if config.distributed:
self.train_sampler = torch.utils.data.distributed.DistributedSampler(
self.training_samples)
else:
self.train_sampler = None
self.data = DataLoader(self.training_samples,
batch_size=config.batch_size,
shuffle=(self.train_sampler is None),
num_workers=config.workers,
pin_memory=True,
persistent_workers=True,
# prefetch_factor=2,
sampler=self.train_sampler)
elif mode == 'online_eval':
self.testing_samples = DataLoadPreprocess(
config, mode, transform=transform)
if config.distributed: # redundant. here only for readability and to be more explicit
# Give whole test set to all processes (and report evaluation only on one) regardless
self.eval_sampler = None
else:
self.eval_sampler = None
self.data = DataLoader(self.testing_samples, 1,
shuffle=False,
num_workers=1,
pin_memory=False,
sampler=self.eval_sampler)
elif mode == 'test':
self.testing_samples = DataLoadPreprocess(
config, mode, transform=transform)
self.data = DataLoader(self.testing_samples,
1, shuffle=False, num_workers=1)
else:
print(
'mode should be one of \'train, test, online_eval\'. Got {}'.format(mode))
def repetitive_roundrobin(*iterables):
"""
cycles through iterables but sample wise
first yield first sample from first iterable then first sample from second iterable and so on
then second sample from first iterable then second sample from second iterable and so on
If one iterable is shorter than the others, it is repeated until all iterables are exhausted
repetitive_roundrobin('ABC', 'D', 'EF') --> A D E B D F C D E
"""
# Repetitive roundrobin
iterables_ = [iter(it) for it in iterables]
exhausted = [False] * len(iterables)
while not all(exhausted):
for i, it in enumerate(iterables_):
try:
yield next(it)
except StopIteration:
exhausted[i] = True
iterables_[i] = itertools.cycle(iterables[i])
# First elements may get repeated if one iterable is shorter than the others
yield next(iterables_[i])
class RepetitiveRoundRobinDataLoader(object):
def __init__(self, *dataloaders):
self.dataloaders = dataloaders
def __iter__(self):
return repetitive_roundrobin(*self.dataloaders)
def __len__(self):
# First samples get repeated, thats why the plus one
return len(self.dataloaders) * (max(len(dl) for dl in self.dataloaders) + 1)
class MixedNYUKITTI(object):
def __init__(self, config, mode, device='cpu', **kwargs):
config = edict(config)
config.workers = config.workers // 2
self.config = config
nyu_conf = change_dataset(edict(config), 'nyu')
kitti_conf = change_dataset(edict(config), 'kitti')
# make nyu default for testing
self.config = config = nyu_conf
img_size = self.config.get("img_size", None)
img_size = img_size if self.config.get(
"do_input_resize", False) else None
if mode == 'train':
nyu_loader = DepthDataLoader(
nyu_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data
kitti_loader = DepthDataLoader(
kitti_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data
# It has been changed to repetitive roundrobin
self.data = RepetitiveRoundRobinDataLoader(
nyu_loader, kitti_loader)
else:
self.data = DepthDataLoader(nyu_conf, mode, device=device).data
def remove_leading_slash(s):
if s[0] == '/' or s[0] == '\\':
return s[1:]
return s
class CachedReader:
def __init__(self, shared_dict=None):
if shared_dict:
self._cache = shared_dict
else:
self._cache = {}
def open(self, fpath):
im = self._cache.get(fpath, None)
if im is None:
im = self._cache[fpath] = Image.open(fpath)
return im
class ImReader:
def __init__(self):
pass
# @cache
def open(self, fpath):
return Image.open(fpath)
class DataLoadPreprocess(Dataset):
def __init__(self, config, mode, transform=None, is_for_online_eval=False, **kwargs):
self.config = config
if mode == 'online_eval':
with open(config.filenames_file_eval, 'r') as f:
self.filenames = f.readlines()
else:
with open(config.filenames_file, 'r') as f:
self.filenames = f.readlines()
self.sec_stage = self.config.get("sec_stage", False)
# self.crop_size = [120, 160] # 1/4
self.crop_size = [120*2, 160*2] # 1/4
self.overlap = self.config.get("overlap", False)
self.consistency_training = self.config.get("consistency_training", False)
self.overlap_length_h = self.config.get("overlap_length_h", int(60))
self.overlap_length_w = self.config.get("overlap_length_w", int(80))
print("current overlap_length_h and overlap_length_w are {} and {}".format(self.overlap_length_h, self.overlap_length_w))
self.mode = mode
self.transform = transform
self.to_tensor = ToTensor(mode)
self.is_for_online_eval = is_for_online_eval
if config.use_shared_dict:
self.reader = CachedReader(config.shared_dict)
else:
self.reader = ImReader()
def postprocess(self, sample):
return sample
def get_crop_bbox(self, img):
"""Randomly get a crop bounding box."""
margin_h = max(img.shape[0] - self.crop_size[0], 0)
margin_w = max(img.shape[1] - self.crop_size[1], 0)
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1]
return crop_y1, crop_y2, crop_x1, crop_x2
def crop(self, img, crop_bbox, tmp=False):
"""Crop from ``img``"""
crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
if tmp:
templete = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.float32)
templete[crop_y1:crop_y2, crop_x1:crop_x2, :] = 1.0
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
return img, templete
else:
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
return img
def __getitem__(self, idx):
sample_path = self.filenames[idx]
focal = float(sample_path.split()[2])
sample = {}
height=480
width=640
if self.mode == 'train':
if self.config.dataset == 'kitti' and self.config.use_right and random.random() > 0.5:
image_path = os.path.join(
self.config.data_path, remove_leading_slash(sample_path.split()[3]))
depth_path = os.path.join(
self.config.gt_path, remove_leading_slash(sample_path.split()[4]))
else:
image_path = os.path.join(
self.config.data_path, remove_leading_slash(sample_path.split()[0]))
depth_path = os.path.join(
self.config.gt_path, remove_leading_slash(sample_path.split()[1]))
image = self.reader.open(image_path)
depth_gt = self.reader.open(depth_path)
w, h = image.size
if self.config.do_kb_crop:
height = image.height
width = image.width
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
depth_gt = depth_gt.crop(
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
image = image.crop(
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
# Avoid blank boundaries due to pixel registration?
# Train images have white border. Test images have black border.
if self.config.dataset == 'nyu' and self.config.avoid_boundary:
# print("Avoiding Blank Boundaries!")
# We just crop and pad again with reflect padding to original size
# original_size = image.size
crop_params = get_white_border(np.array(image, dtype=np.uint8))
image = image.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom))
depth_gt = depth_gt.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom))
# Use reflect padding to fill the blank
image = np.array(image)
image = np.pad(image, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right), (0, 0)), mode='reflect')
image = Image.fromarray(image)
depth_gt = np.array(depth_gt)
depth_gt = np.pad(depth_gt, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right)), 'constant', constant_values=0)
depth_gt = Image.fromarray(depth_gt)
if self.config.do_random_rotate and (self.config.aug):
# NOTE: YES!
random_angle = (random.random() - 0.5) * 2 * self.config.degree
image = self.rotate_image(image, random_angle)
depth_gt = self.rotate_image(
depth_gt, random_angle, flag=Image.NEAREST)
image = np.asarray(image, dtype=np.float32) / 255.0
depth_gt = np.asarray(depth_gt, dtype=np.float32)
depth_gt = np.expand_dims(depth_gt, axis=2)
disp_gt_copy = depth_gt[:, :, 0].copy()
if self.config.dataset == 'nyu':
depth_gt = depth_gt / 1000.0
else:
depth_gt = depth_gt / 256.0
# if self.config.aug and (self.config.random_crop):
# image, depth_gt = self.random_crop(
# image, depth_gt, self.config.input_height, self.config.input_width)
image, depth_gt = self.train_preprocess(image, depth_gt)
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
if self.random_crop: # use in sec_stage
if self.consistency_training:
crop_y1, crop_y2, crop_x1, crop_x2 = self.get_crop_bbox(image) # ensure the prob of crop is the same
while True:
# shift_x = random.randint(self.overlap_length//3, self.overlap_length)
# shift_y = random.randint(self.overlap_length//3, self.overlap_length)
shift_x = self.overlap_length_w
shift_y = self.overlap_length_h
if random.random() > 0.5:
shift_x = shift_x * -1
if random.random() > 0.5:
shift_y = shift_y * -1
crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift = crop_y1 + shift_y, crop_y2 + shift_y, crop_x1 + shift_x, crop_x2 + shift_x
if crop_y1_shift > 0 and crop_x1_shift > 0 and crop_y2_shift < image.shape[0] and crop_x2_shift < image.shape[1]:
break
bbox_ori = (crop_y1, crop_y2, crop_x1, crop_x2)
bbox_shift = (crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift)
image_ori, crop_area_ori = self.crop(image, bbox_ori, tmp=True)
image_shift, crop_area_shift = self.crop(image, bbox_shift, tmp=True)
depth_gt_ori = self.crop(depth_gt, bbox_ori)
depth_gt_shift = self.crop(depth_gt, bbox_shift)
disp_gt_copy_ori = self.crop(disp_gt_copy, bbox_ori)
disp_gt_copy_shift = self.crop(disp_gt_copy, bbox_shift)
bboxs_ori = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2])
bboxs_shift = torch.tensor([crop_x1_shift / width * 160 * 2, crop_y1_shift / height * 120 * 2, crop_x2_shift / width * 160 * 2, crop_y2_shift / height * 120 * 2])
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw_shift = torch.tensor([crop_x1_shift, crop_y1_shift, crop_x2_shift, crop_y2_shift])
else:
bbox = self.get_crop_bbox(image)
image, crop_area = self.crop(image, bbox, tmp=True)
depth_gt = self.crop(depth_gt, bbox)
disp_gt_copy = self.crop(disp_gt_copy, bbox)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bboxs_res = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2]) # coord in 384, 512
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
mask_raw = np.logical_and(depth_gt_temp > self.config.min_depth, depth_gt_temp < self.config.max_depth).squeeze()[None, ...]
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'mask': mask, 'image_raw': image.copy(), 'mask_raw': mask_raw}
if self.random_crop:
if self.consistency_training:
image = np.concatenate([image_ori, image_shift], axis=-1)
depth_gt = np.concatenate([depth_gt_ori, depth_gt_shift], axis=-1)
crop_area = np.concatenate([crop_area_ori, crop_area_shift], axis=-1)
bboxs_res = torch.cat([bboxs_ori, bboxs_shift], dim=-1)
bboxes_raw_res = torch.cat([bboxs_raw, bboxs_raw_shift], dim=-1)
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth)
# hack the sample dict
sample['image'] = image
sample['depth'] = depth_gt
sample['crop_area'] = crop_area
sample['bbox'] = bboxs_res
sample['bbox_raw'] = bboxes_raw_res
sample['shift'] = torch.tensor([shift_y, shift_x]) # h direction, then w direction
sample['mask'] = mask
else:
if bboxs_res is not None:
sample['bbox'] = bboxs_res
sample['bbox_raw'] = bboxs_raw
sample['crop_area'] = crop_area
if self.config.aug and self.config.random_translate:
image, depth_gt = self.random_translate(image, depth_gt, self.config.max_translation)
else:
if self.mode == 'online_eval':
data_path = self.config.data_path_eval
else:
data_path = self.config.data_path
image_path = os.path.join(
data_path, remove_leading_slash(sample_path.split()[0]))
image = np.asarray(self.reader.open(image_path),
dtype=np.float32) / 255.0
if self.mode == 'online_eval':
gt_path = self.config.gt_path_eval
depth_path = os.path.join(
gt_path, remove_leading_slash(sample_path.split()[1]))
has_valid_depth = False
try:
depth_gt = self.reader.open(depth_path)
has_valid_depth = True
except IOError:
depth_gt = False
# print('Missing gt for {}'.format(image_path))
if has_valid_depth:
depth_gt = np.asarray(depth_gt, dtype=np.float32)
depth_gt = np.expand_dims(depth_gt, axis=2)
disp_gt_copy = depth_gt[:, :, 0].copy()
if self.config.dataset == 'nyu':
depth_gt = depth_gt / 1000.0
else:
depth_gt = depth_gt / 256.0
mask = np.logical_and(
depth_gt >= self.config.min_depth, depth_gt <= self.config.max_depth).squeeze()[None, ...]
else:
mask = False
if self.config.do_kb_crop:
height = image.shape[0]
width = image.shape[1]
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
image = image[top_margin:top_margin + 352,
left_margin:left_margin + 1216, :]
if self.mode == 'online_eval' and has_valid_depth:
depth_gt = depth_gt[top_margin:top_margin +
352, left_margin:left_margin + 1216, :]
# NOTE: start insert something new for sec_stage training
if self.sec_stage:
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
x_start, y_start = [0, 240], [0, 320]
# x_start, y_start = [0 + 3 * self.overlap / 2, 120 + self.overlap / 2, 240 - self.overlap / 2, 360 - 3 * self.overlap / 2], \
# [0 + 3 * self.overlap / 2, 160 + self.overlap / 2, 320 - self.overlap / 2, 480 - 3 * self.overlap / 2]
img_crops = []
bboxs_roi = []
crop_areas = []
bboxs_raw_list = []
for x in x_start:
for y in y_start:
bbox = (int(x), int(x+240), int(y), int(y+320))
img_crop, crop_area = self.crop(image, bbox, tmp=True)
img_crops.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2])
bboxs_roi.append(bbox_roi)
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw_list.append(bboxs_raw)
image = img_crops
bboxs_roi = torch.stack(bboxs_roi, dim=0)
bboxs_raw = torch.stack(bboxs_raw_list, dim=0)
disp_gt_edges = get_boundaries(disp_gt_copy, th=1, dilation=0)
if self.mode == 'online_eval':
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth,
'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1],
'mask': mask, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges}
if bboxs_roi is not None:
sample['bbox'] = bboxs_roi
sample['bbox_raw'] = bboxs_raw
if crop_areas is not None:
sample['crop_area'] = crop_areas
else:
sample = {'image': image, 'focal': focal}
if (self.mode == 'train') or ('has_valid_depth' in sample and sample['has_valid_depth']):
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
sample['mask'] = mask
if self.transform:
# sample = self.transform(sample)
sample['img_temp'] = img_temp
sample['depth_gt_temp'] = depth_gt_temp
sample = self.transform(sample)
sample = self.postprocess(sample)
sample['dataset'] = self.config.dataset
sample = {**sample, 'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1]}
return sample
def rotate_image(self, image, angle, flag=Image.BILINEAR):
result = image.rotate(angle, resample=flag)
return result
def random_crop(self, img, depth, height, width):
assert img.shape[0] >= height
assert img.shape[1] >= width
assert img.shape[0] == depth.shape[0]
assert img.shape[1] == depth.shape[1]
x = random.randint(0, img.shape[1] - width)
y = random.randint(0, img.shape[0] - height)
img = img[y:y + height, x:x + width, :]
depth = depth[y:y + height, x:x + width, :]
return img, depth
def random_translate(self, img, depth, max_t=20):
assert img.shape[0] == depth.shape[0]
assert img.shape[1] == depth.shape[1]
p = self.config.translate_prob
do_translate = random.random()
if do_translate > p:
return img, depth
x = random.randint(-max_t, max_t)
y = random.randint(-max_t, max_t)
M = np.float32([[1, 0, x], [0, 1, y]])
# print(img.shape, depth.shape)
img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
depth = cv2.warpAffine(depth, M, (depth.shape[1], depth.shape[0]))
depth = depth.squeeze()[..., None] # add channel dim back. Affine warp removes it
# print("after", img.shape, depth.shape)
return img, depth
def train_preprocess(self, image, depth_gt):
if self.config.aug:
# Random flipping
do_flip = random.random()
if do_flip > 0.5:
image = (image[:, ::-1, :]).copy()
depth_gt = (depth_gt[:, ::-1, :]).copy()
# Random gamma, brightness, color augmentation
do_augment = random.random()
if do_augment > 0.5:
image = self.augment_image(image)
return image, depth_gt
def augment_image(self, image):
# gamma augmentation
gamma = random.uniform(0.9, 1.1)
image_aug = image ** gamma
# brightness augmentation
if self.config.dataset == 'nyu':
brightness = random.uniform(0.75, 1.25)
else:
brightness = random.uniform(0.9, 1.1)
image_aug = image_aug * brightness
# color augmentation
colors = np.random.uniform(0.9, 1.1, size=3)
white = np.ones((image.shape[0], image.shape[1]))
color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
image_aug *= color_image
image_aug = np.clip(image_aug, 0, 1)
return image_aug
def __len__(self):
return len(self.filenames)
# class ToTensor(object):
# def __init__(self, mode, do_normalize=False, size=None):
# self.mode = mode
# self.normalize = transforms.Normalize(
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity()
# self.size = size
# if size is not None:
# self.resize = transforms.Resize(size=size)
# else:
# self.resize = nn.Identity()
# def __call__(self, sample):
# image, focal = sample['image'], sample['focal']
# image = self.to_tensor(image)
# image = self.normalize(image)
# image = self.resize(image)
# if self.mode == 'test':
# return {'image': image, 'focal': focal}
# depth = sample['depth']
# if self.mode == 'train':
# depth = self.to_tensor(depth)
# return {**sample, 'image': image, 'depth': depth, 'focal': focal}
# else:
# has_valid_depth = sample['has_valid_depth']
# image = self.resize(image)
# return {**sample, 'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth,
# 'image_path': sample['image_path'], 'depth_path': sample['depth_path']}
# def to_tensor(self, pic):
# if not (_is_pil_image(pic) or _is_numpy_image(pic)):
# raise TypeError(
# 'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
# if isinstance(pic, np.ndarray):
# img = torch.from_numpy(pic.transpose((2, 0, 1)))
# return img
# # handle PIL Image
# if pic.mode == 'I':
# img = torch.from_numpy(np.array(pic, np.int32, copy=False))
# elif pic.mode == 'I;16':
# img = torch.from_numpy(np.array(pic, np.int16, copy=False))
# else:
# img = torch.ByteTensor(
# torch.ByteStorage.from_buffer(pic.tobytes()))
# # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
# if pic.mode == 'YCbCr':
# nchannel = 3
# elif pic.mode == 'I;16':
# nchannel = 1
# else:
# nchannel = len(pic.mode)
# img = img.view(pic.size[1], pic.size[0], nchannel)
# img = img.transpose(0, 1).transpose(0, 2).contiguous()
# if isinstance(img, torch.ByteTensor):
# return img.float()
# else:
# return img
class ToTensor(object):
def __init__(self, mode, do_normalize=False, size=None, sec_stage=False):
self.mode = mode
# don't do normalization as default
self.normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity()
self.size = size
if size is not None:
# self.resize = transforms.Resize(size=size)
net_h, net_w = size
self.resize = Resize(net_w, net_h, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")
else:
self.resize = nn.Identity()
self.sec_stage = sec_stage
def __call__(self, sample):
image, focal = sample['image'], sample['focal']
crop_areas = sample.get('crop_area', None)
if isinstance(image, list):
# there must be crop_areas
# only infer on eval sec_stage
imgs_process = []
crp_process = []
for img, crp in zip(image, crop_areas):
img = self.to_tensor(img)
img = self.normalize(img)
img = img.unsqueeze(dim=0)
img = self.resize(img)
img = img.squeeze(dim=0)
imgs_process.append(img)
crp = self.to_tensor(crp)
crp = crp.unsqueeze(dim=0)
crp = self.resize(crp)
crp = crp.squeeze(dim=0)
crp_process.append(crp)
image = torch.cat(imgs_process, dim=0)
crop_areas = torch.cat(crp_process, dim=0)
img_temp = sample['img_temp']
img_temp = self.to_tensor(img_temp)
img_temp = self.normalize(img_temp)
img_temp = img_temp.unsqueeze(dim=0)
img_temp = self.resize(img_temp) #NOTE: hack
img_temp = img_temp.squeeze(dim=0)
image_raw = copy.deepcopy(img_temp)
else:
image = self.to_tensor(image)
image = self.normalize(image)
if crop_areas is not None:
crop_areas = self.to_tensor(crop_areas)
crop_areas = crop_areas.unsqueeze(dim=0)
crop_areas = self.resize(crop_areas)
crop_areas = crop_areas.squeeze(dim=0)
if self.sec_stage:
img_temp = sample['img_temp']
img_temp = self.to_tensor(img_temp)
img_temp = self.normalize(img_temp)
img_temp = img_temp.unsqueeze(dim=0)
img_temp = self.resize(img_temp)
image_raw = img_temp.squeeze(dim=0)
image = image.unsqueeze(dim=0)
image = self.resize(image)
image = image.squeeze(dim=0)
else:
# in the first stage, this hr info is reserved
image_raw = copy.deepcopy(image)
image = image.unsqueeze(dim=0)
image = self.resize(image)
image = image.squeeze(dim=0)
if self.mode == 'test':
return_dict = {'image': image, 'focal': focal}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
depth = sample['depth']
depth = self.to_tensor(depth)
depth_gt_temp = sample['depth_gt_temp']
depth_gt_raw = self.to_tensor(depth_gt_temp)
if self.mode == 'train':
return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw, 'depth_raw': depth_gt_raw}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
else:
has_valid_depth = sample['has_valid_depth']
# image = self.resize(image)
return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw,
'has_valid_depth': has_valid_depth, 'image_path': sample['image_path'], 'depth_path': sample['depth_path'],
'depth_raw': depth_gt_raw}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
def to_tensor(self, pic):
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1))) # img here
return img