Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat, Zhenyu Li | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
def gaussian(window_size, sigma): | |
gauss = torch.Tensor([np.exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) | |
return gauss/gauss.sum() | |
def create_window(window_size, channel=1): | |
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) | |
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() | |
return window | |
def ssim(img1, img2, val_range, window_size=11, window=None, size_average=True, full=False): | |
img1 = nn.functional.interpolate(img1, (256, 256), mode='bilinear', align_corners=True) | |
img2 = nn.functional.interpolate(img2, (256, 256), mode='bilinear', align_corners=True) | |
# h, w = 256, 256 | |
L = val_range | |
padd = 0 | |
(_, channel, height, width) = img1.size() | |
if window is None: | |
real_size = min(window_size, height, width) | |
window = create_window(real_size, channel=channel).to(img1.device) | |
mu1 = F.conv2d(img1, window, padding=padd, groups=channel) | |
mu2 = F.conv2d(img2, window, padding=padd, groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq | |
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq | |
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2 | |
C1 = (0.01 * L) ** 2 | |
C2 = (0.03 * L) ** 2 | |
v1 = 2.0 * sigma12 + C2 | |
v2 = sigma1_sq + sigma2_sq + C2 | |
cs = torch.mean(v1 / v2) # contrast sensitivity | |
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) | |
if size_average: | |
ret = ssim_map.mean() | |
else: | |
ret = ssim_map.mean(1).mean(1).mean(1) | |
if full: | |
return ret, cs | |
return ret | |
class SSIMLoss(nn.Module): | |
def __init__(self, min_depth=1e-3, max_depth=10): | |
super(SSIMLoss, self).__init__() | |
self.name = 'SSIM' | |
self.min_depth = min_depth | |
self.max_depth = max_depth | |
def forward(self, input, target): | |
loss = torch.clamp((1 - ssim(input, target, val_range=self.max_depth/self.min_depth)) * 0.5, 0, 1) | |
return loss | |
# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7) | |
class SILogLoss(nn.Module): | |
"""SILog loss (pixel-wise)""" | |
def __init__(self, beta=0.15): | |
super().__init__() | |
self.name = 'SILog' | |
self.beta = beta | |
def forward(self, input, target): | |
alpha = 1e-10 | |
g = torch.log(input + alpha) - torch.log(target + alpha) | |
# n, c, h, w = g.shape | |
# norm = 1/(h*w) | |
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2 | |
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2) | |
loss = 10 * torch.sqrt(Dg) | |
return loss | |
def gradient_y(img): | |
gy = torch.cat( [F.conv2d(img[:, i, :, :].unsqueeze(0), torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).view((1, 1, 3, 3)).to(img.device), padding=1) for i in range(img.shape[1])], 1) | |
return gy | |
def gradient_x(img): | |
gx = torch.cat( [F.conv2d(img[:, i, :, :].unsqueeze(0), torch.Tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]).view((1, 1, 3, 3)).to(img.device), padding=1) for i in range(img.shape[1])], 1) | |
return gx | |
def laplacian(img): | |
lap = torch.cat( [F.conv2d(img[:, i, :, :].unsqueeze(0), torch.Tensor([[0, 1, 0], [1, -4, 1], [0, 1, 0]]).view((1, 1, 3, 3)).to(img.device), padding=1) for i in range(img.shape[1])], 1) | |
return lap | |
def laplacian_matching_loss(img1, img2, mask=None): | |
return torch.mean(torch.abs(laplacian(img1)[mask] - laplacian(img2)[mask])) | |
class GradL1Loss(nn.Module): | |
def __init__(self): | |
super(GradL1Loss, self).__init__() | |
self.name = 'GradL1' | |
def forward(self, input, target, mask=None): | |
grad_gt_x = gradient_x(target) | |
grad_gt_y = gradient_y(target) | |
grad_pred_x = gradient_x(input) | |
grad_pred_y = gradient_y(input) | |
loss = torch.mean(torch.abs(grad_pred_x[mask] - grad_gt_x[mask])) + torch.mean(torch.abs(grad_pred_y[mask] - grad_gt_y[mask])) | |
return loss | |
# Edge aware smoothness loss implementation is adapted from: https://github.com/anuragranj/cc | |
def edge_aware_smoothness_per_pixel(img, pred): | |
""" A measure of how closely the gradients of a predicted disparity/depth map match the | |
gradients of the RGB image. | |
Args: | |
img (c x 3 x h x w tensor): RGB image | |
pred (c x h x w tensor): predicted depth/disparity | |
Returns: | |
c x 1 tensor: measure of gradient matching (smoothness loss) | |
""" | |
pred_gradients_x = gradient_x(pred) | |
pred_gradients_y = gradient_y(pred) | |
image_gradients_x = gradient_x(img) | |
image_gradients_y = gradient_y(img) | |
weights_x = torch.exp(-torch.mean(torch.abs(image_gradients_x), 1, keepdim=True)) | |
weights_y = torch.exp(-torch.mean(torch.abs(image_gradients_y), 1, keepdim=True)) | |
smoothness_x = torch.abs(pred_gradients_x) * weights_x | |
smoothness_y = torch.abs(pred_gradients_y) * weights_y | |
return torch.mean(smoothness_x) + torch.mean(smoothness_y) | |
ssim_loss = SSIMLoss() | |
gradl1_loss = GradL1Loss() |