Zhyever
refactor
1f418ff
raw
history blame
10.7 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import math
import os
from functools import partial
from fvcore.common.checkpoint import PeriodicCheckpointer
import torch
from dinov2.data import SamplerType, make_data_loader, make_dataset
from dinov2.data import collate_data_and_cast, DataAugmentationDINO, MaskingGenerator
import dinov2.distributed as distributed
from dinov2.fsdp import FSDPCheckpointer
from dinov2.logging import MetricLogger
from dinov2.utils.config import setup
from dinov2.utils.utils import CosineScheduler
from dinov2.train.ssl_meta_arch import SSLMetaArch
torch.backends.cuda.matmul.allow_tf32 = True # PyTorch 1.12 sets this to False by default
logger = logging.getLogger("dinov2")
def get_args_parser(add_help: bool = True):
parser = argparse.ArgumentParser("DINOv2 training", add_help=add_help)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument(
"--no-resume",
action="store_true",
help="Whether to not attempt to resume from the checkpoint directory. ",
)
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
parser.add_argument("--eval", type=str, default="", help="Eval type to perform")
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument(
"--output-dir",
"--output_dir",
default="",
type=str,
help="Output directory to save logs and checkpoints",
)
return parser
def build_optimizer(cfg, params_groups):
return torch.optim.AdamW(params_groups, betas=(cfg.optim.adamw_beta1, cfg.optim.adamw_beta2))
def build_schedulers(cfg):
OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
lr = dict(
base_value=cfg.optim["lr"],
final_value=cfg.optim["min_lr"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
warmup_iters=cfg.optim["warmup_epochs"] * OFFICIAL_EPOCH_LENGTH,
start_warmup_value=0,
)
wd = dict(
base_value=cfg.optim["weight_decay"],
final_value=cfg.optim["weight_decay_end"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
)
momentum = dict(
base_value=cfg.teacher["momentum_teacher"],
final_value=cfg.teacher["final_momentum_teacher"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
)
teacher_temp = dict(
base_value=cfg.teacher["teacher_temp"],
final_value=cfg.teacher["teacher_temp"],
total_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
warmup_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
start_warmup_value=cfg.teacher["warmup_teacher_temp"],
)
lr_schedule = CosineScheduler(**lr)
wd_schedule = CosineScheduler(**wd)
momentum_schedule = CosineScheduler(**momentum)
teacher_temp_schedule = CosineScheduler(**teacher_temp)
last_layer_lr_schedule = CosineScheduler(**lr)
last_layer_lr_schedule.schedule[
: cfg.optim["freeze_last_layer_epochs"] * OFFICIAL_EPOCH_LENGTH
] = 0 # mimicking the original schedules
logger.info("Schedulers ready.")
return (
lr_schedule,
wd_schedule,
momentum_schedule,
teacher_temp_schedule,
last_layer_lr_schedule,
)
def apply_optim_scheduler(optimizer, lr, wd, last_layer_lr):
for param_group in optimizer.param_groups:
is_last_layer = param_group["is_last_layer"]
lr_multiplier = param_group["lr_multiplier"]
wd_multiplier = param_group["wd_multiplier"]
param_group["weight_decay"] = wd * wd_multiplier
param_group["lr"] = (last_layer_lr if is_last_layer else lr) * lr_multiplier
def do_test(cfg, model, iteration):
new_state_dict = model.teacher.state_dict()
if distributed.is_main_process():
iterstring = str(iteration)
eval_dir = os.path.join(cfg.train.output_dir, "eval", iterstring)
os.makedirs(eval_dir, exist_ok=True)
# save teacher checkpoint
teacher_ckp_path = os.path.join(eval_dir, "teacher_checkpoint.pth")
torch.save({"teacher": new_state_dict}, teacher_ckp_path)
def do_train(cfg, model, resume=False):
model.train()
inputs_dtype = torch.half
fp16_scaler = model.fp16_scaler # for mixed precision training
# setup optimizer
optimizer = build_optimizer(cfg, model.get_params_groups())
(
lr_schedule,
wd_schedule,
momentum_schedule,
teacher_temp_schedule,
last_layer_lr_schedule,
) = build_schedulers(cfg)
# checkpointer
checkpointer = FSDPCheckpointer(model, cfg.train.output_dir, optimizer=optimizer, save_to_disk=True)
start_iter = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH
periodic_checkpointer = PeriodicCheckpointer(
checkpointer,
period=3 * OFFICIAL_EPOCH_LENGTH,
max_iter=max_iter,
max_to_keep=3,
)
# setup data preprocessing
img_size = cfg.crops.global_crops_size
patch_size = cfg.student.patch_size
n_tokens = (img_size // patch_size) ** 2
mask_generator = MaskingGenerator(
input_size=(img_size // patch_size, img_size // patch_size),
max_num_patches=0.5 * img_size // patch_size * img_size // patch_size,
)
data_transform = DataAugmentationDINO(
cfg.crops.global_crops_scale,
cfg.crops.local_crops_scale,
cfg.crops.local_crops_number,
global_crops_size=cfg.crops.global_crops_size,
local_crops_size=cfg.crops.local_crops_size,
)
collate_fn = partial(
collate_data_and_cast,
mask_ratio_tuple=cfg.ibot.mask_ratio_min_max,
mask_probability=cfg.ibot.mask_sample_probability,
n_tokens=n_tokens,
mask_generator=mask_generator,
dtype=inputs_dtype,
)
# setup data loader
dataset = make_dataset(
dataset_str=cfg.train.dataset_path,
transform=data_transform,
target_transform=lambda _: (),
)
# sampler_type = SamplerType.INFINITE
sampler_type = SamplerType.SHARDED_INFINITE
data_loader = make_data_loader(
dataset=dataset,
batch_size=cfg.train.batch_size_per_gpu,
num_workers=cfg.train.num_workers,
shuffle=True,
seed=start_iter, # TODO: Fix this -- cfg.train.seed
sampler_type=sampler_type,
sampler_advance=0, # TODO(qas): fix this -- start_iter * cfg.train.batch_size_per_gpu,
drop_last=True,
collate_fn=collate_fn,
)
# training loop
iteration = start_iter
logger.info("Starting training from iteration {}".format(start_iter))
metrics_file = os.path.join(cfg.train.output_dir, "training_metrics.json")
metric_logger = MetricLogger(delimiter=" ", output_file=metrics_file)
header = "Training"
for data in metric_logger.log_every(
data_loader,
10,
header,
max_iter,
start_iter,
):
current_batch_size = data["collated_global_crops"].shape[0] / 2
if iteration > max_iter:
return
# apply schedules
lr = lr_schedule[iteration]
wd = wd_schedule[iteration]
mom = momentum_schedule[iteration]
teacher_temp = teacher_temp_schedule[iteration]
last_layer_lr = last_layer_lr_schedule[iteration]
apply_optim_scheduler(optimizer, lr, wd, last_layer_lr)
# compute losses
optimizer.zero_grad(set_to_none=True)
loss_dict = model.forward_backward(data, teacher_temp=teacher_temp)
# clip gradients
if fp16_scaler is not None:
if cfg.optim.clip_grad:
fp16_scaler.unscale_(optimizer)
for v in model.student.values():
v.clip_grad_norm_(cfg.optim.clip_grad)
fp16_scaler.step(optimizer)
fp16_scaler.update()
else:
if cfg.optim.clip_grad:
for v in model.student.values():
v.clip_grad_norm_(cfg.optim.clip_grad)
optimizer.step()
# perform teacher EMA update
model.update_teacher(mom)
# logging
if distributed.get_global_size() > 1:
for v in loss_dict.values():
torch.distributed.all_reduce(v)
loss_dict_reduced = {k: v.item() / distributed.get_global_size() for k, v in loss_dict.items()}
if math.isnan(sum(loss_dict_reduced.values())):
logger.info("NaN detected")
raise AssertionError
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
metric_logger.update(lr=lr)
metric_logger.update(wd=wd)
metric_logger.update(mom=mom)
metric_logger.update(last_layer_lr=last_layer_lr)
metric_logger.update(current_batch_size=current_batch_size)
metric_logger.update(total_loss=losses_reduced, **loss_dict_reduced)
# checkpointing and testing
if cfg.evaluation.eval_period_iterations > 0 and (iteration + 1) % cfg.evaluation.eval_period_iterations == 0:
do_test(cfg, model, f"training_{iteration}")
torch.cuda.synchronize()
periodic_checkpointer.step(iteration)
iteration = iteration + 1
metric_logger.synchronize_between_processes()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def main(args):
cfg = setup(args)
model = SSLMetaArch(cfg).to(torch.device("cuda"))
model.prepare_for_distributed_training()
logger.info("Model:\n{}".format(model))
if args.eval_only:
iteration = (
FSDPCheckpointer(model, save_dir=cfg.train.output_dir)
.resume_or_load(cfg.MODEL.WEIGHTS, resume=not args.no_resume)
.get("iteration", -1)
+ 1
)
return do_test(cfg, model, f"manual_{iteration}")
do_train(cfg, model, resume=not args.no_resume)
if __name__ == "__main__":
args = get_args_parser(add_help=True).parse_args()
main(args)