Spaces:
Runtime error
Runtime error
File size: 10,652 Bytes
b454c71 074f838 9297d37 074f838 ea4d797 f82a1c7 ea4d797 f82a1c7 ea4d797 f82a1c7 ea4d797 f82a1c7 ea4d797 a039863 ea4d797 41123f1 ea4d797 f82a1c7 57c0c93 074f838 57c0c93 074f838 57c0c93 074f838 57c0c93 9b03d6f 074f838 57c0c93 105f709 72ca0f0 105f709 72ca0f0 105f709 57c0c93 72ca0f0 105f709 72ca0f0 105f709 f82a1c7 72ca0f0 f82a1c7 f6fc95e f82a1c7 074f838 241e0dd ffffc8f f3746a4 241e0dd 3034c72 241e0dd 3034c72 b3f0412 241e0dd 074f838 a886e2b 074f838 90bd918 b03c313 074f838 015b642 074f838 72275cb 074f838 ce0b170 858064d 074f838 241e0dd 8f73221 241e0dd 0ea76bb 864289d 0ea76bb 074f838 015b642 a886e2b ce0b170 b454c71 72ca0f0 105f709 72ca0f0 864289d 105f709 074f838 0ea76bb a886e2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i:(i+batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def load_recommender(path, start_page=1):
global recommender
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"):
openai.api_key = openAI_key
temperature=0.7
max_tokens=256
top_p=1
frequency_penalty=0
presence_penalty=0
if model == "text-davinci-003":
completions = openai.Completion.create(
engine=model,
prompt=prompt,
max_tokens=max_tokens,
n=1,
stop=None,
temperature=temperature,
)
message = completions.choices[0].text
else:
message = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "assistant", "content": "Here is some initial assistant message."},
{"role": "user", "content": prompt}
],
temperature=.3,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
).choices[0].message['content']
return message
def generate_answer(question, openAI_key, model):
topn_chunks = recommender(question)
prompt = 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Cite each reference using [ Page Number] notation. "\
"Only answer what is asked. The answer should be short and concise. \n\nQuery: "
prompt += f"{question}\nAnswer:"
answer = generate_text(openAI_key, prompt, model)
return answer
def question_answer(chat_history, url, file, question, openAI_key, model):
try:
if openAI_key.strip()=='':
return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
if url.strip() == '' and file is None:
return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
if url.strip() != '' and file is not None:
return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
if model is None or model =='':
return '[ERROR]: You have not selected any model. Please choose an LLM model.'
if url.strip() != '':
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
load_recommender('corpus.pdf')
else:
old_file_name = file.name
file_name = file.name
file_name = file_name[:-12] + file_name[-4:]
os.rename(old_file_name, file_name)
load_recommender(file_name)
if question.strip() == '':
return '[ERROR]: Question field is empty'
if model == "text-davinci-003" or model == "gpt-4" or model == "gpt-4-32k":
answer = generate_answer_text_davinci_003(question, openAI_key)
else:
answer = generate_answer(question, openAI_key, model)
chat_history.append([question, answer])
return chat_history
except openai.error.InvalidRequestError as e:
return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!'
def generate_text_text_davinci_003(openAI_key,prompt, engine="text-davinci-003"):
openai.api_key = openAI_key
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text
return message
def generate_answer_text_davinci_003(question,openAI_key):
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
"with the same name, create separate answers for each. Only include information found in the results and "\
"don't add any additional information. Make sure the answer is correct and don't output false content. "\
"If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
"search results which has nothing to do with the question. Only answer what is asked. The "\
"answer should be short and concise. \n\nQuery: {question}\nAnswer: "
prompt += f"Query: {question}\nAnswer:"
answer = generate_text_text_davinci_003(openAI_key, prompt,"text-davinci-003")
return answer
# pre-defined questions
questions = [
"What did the study investigate?",
"Can you provide a summary of this paper?",
"what are the methodologies used in this study?",
"what are the data intervals used in this study? Give me the start dates and end dates?",
"what are the main limitations of this study?",
"what are the main shortcomings of this study?",
"what are the main findings of the study?",
"what are the main results of the study?",
"what are the main contributions of this study?",
"what is the conclusion of this paper?",
"what are the input features used in this study?",
"what is the dependent variable in this study?",
]
recommender = SemanticSearch()
title = 'PDF GPT Turbo'
description = """ PDF GPT Turbo allows you to chat with your PDF files. It uses Google's Universal Sentence Encoder with Deep averaging network (DAN) to give hallucination free response by improving the embedding quality of OpenAI. It cites the page number in square brackets([Page No.]) and shows where the information is located, adding credibility to the responses."""
with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:
gr.Markdown(f'<center><h3>{title}</h3></center>')
gr.Markdown(description)
with gr.Row():
with gr.Group():
gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
with gr.Accordion("API Key"):
openAI_key = gr.Textbox(label='Enter your OpenAI API key here', password=True)
url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf )')
gr.Markdown("<center><h4>OR<h4></center>")
file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
question = gr.Textbox(label='Enter your question here')
gr.Examples(
[[q] for q in questions],
inputs=[question],
label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box, then press Enter!",
)
model = gr.Radio([
'gpt-3.5-turbo',
'gpt-3.5-turbo-16k',
'gpt-3.5-turbo-0613',
'gpt-3.5-turbo-16k-0613',
'text-davinci-003',
'gpt-4',
'gpt-4-32k'
], label='Select Model', default='gpt-3.5-turbo')
btn = gr.Button(value='Submit')
btn.style(full_width=True)
with gr.Group():
chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=50, elem_id="chatbot")
#
# Bind the click event of the button to the question_answer function
btn.click(
question_answer,
inputs=[chatbot, url, file, question, openAI_key, model],
outputs=[chatbot],
)
demo.launch()
|