HubHop
update
2f9b80c
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from utils import get_root_logger
from timm.models import create_model
import models_v2
import requests
import utils
import time
import sys
import datetime
import os
from snnet import SNNet, SNNetv2
import warnings
warnings.filterwarnings("ignore")
from fvcore.nn import FlopCountAnalysis
from PIL import Image
import gradio as gr
import plotly.express as px
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--bce-loss', action='store_true')
parser.add_argument('--unscale-lr', action='store_true')
# Model parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT',
help='Color jitter factor (default: 0.3)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
parser.add_argument('--train-mode', action='store_true')
parser.add_argument('--no-train-mode', action='store_false', dest='train_mode')
parser.set_defaults(train_mode=True)
parser.add_argument('--ThreeAugment', action='store_true') # 3augment
parser.add_argument('--src', action='store_true') # simple random crop
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
help='Name of teacher model to train (default: "regnety_160"')
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--attn-only', action='store_true')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cpu',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--exp_name', default='deit', type=str, help='experiment name')
parser.add_argument('--config', default=None, type=str, help='configuration')
parser.add_argument('--scoring', action='store_true', default=False, help='configuration')
parser.add_argument('--proxy', default='synflow', type=str, help='configuration')
parser.add_argument('--snnet_name', default='snnetv2', type=str, help='configuration')
parser.add_argument('--get_flops', action='store_true')
parser.add_argument('--flops_sampling_k', default=None, type=float, help="Crop ratio for evaluation")
parser.add_argument('--low_rank', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--lora_r', default=64, type=int,
help='number of distributed processes')
parser.add_argument('--flops_gap', default=1.0, type=float,
help='number of distributed processes')
return parser
def initialize_model_stitching_layer(model, mixup_fn, data_loader, device):
for samples, targets in data_loader:
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
model.initialize_stitching_weights(samples)
break
@torch.no_grad()
def analyse_flops_for_all(model, config_name):
all_cfgs = model.all_cfgs
stitch_results = {}
for cfg_id in all_cfgs:
model.reset_stitch_id(cfg_id)
flops = FlopCountAnalysis(model, torch.randn(1, 3, 224, 224).cuda()).total()
stitch_results[cfg_id] = flops
save_dir = './model_flops'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
with open(os.path.join(save_dir, f'flops_{config_name}.json'), 'w+') as f:
json.dump(stitch_results, f, indent=4)
def main(args):
utils.init_distributed_mode(args)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
logger = get_root_logger(os.path.join(args.output_dir, f'{timestamp}.log'))
logger.info(str(args))
if args.distillation_type != 'none' and args.finetune and not args.eval:
raise NotImplementedError("Finetuning with distillation not yet supported")
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
from datasets import build_transform
transform = build_transform(False, args)
anchors = []
for i, anchor_name in enumerate(args.anchors):
logger.info(f"Creating model: {anchor_name}")
anchor = create_model(
anchor_name,
pretrained=False,
pretrained_deit=None,
num_classes=1000,
drop_path_rate=args.anchor_drop_path[i],
img_size=args.input_size
)
anchors.append(anchor)
model = SNNetv2(anchors, lora_r=args.lora_r)
checkpoint = torch.load(args.resume, map_location='cpu')
# torch.save({'model': checkpoint['model']}, './snnetv2_deit3_s_l_50ep.pth')
logger.info(f"load checkpoint from {args.resume}")
model.load_state_dict(checkpoint['model'])
model.to(device)
config_name = args.config.split('/')[-1].split('.')[0]
model.eval()
eval_res = {}
flops_res = {}
with open('stitches_res_s_l.txt', 'r') as f:
for line in f.readlines():
epoch_stat = json.loads(line.strip())
eval_res[epoch_stat['cfg_id']] = epoch_stat['acc1']
flops_res[epoch_stat['cfg_id']] = epoch_stat['flops'] / 1e9
def visualize_stitch_pos(stitch_id):
if stitch_id == 13:
# 13 is equivalent to 0
stitch_id = 0
names = [f'ID {key}' for key in flops_res.keys()]
fig = px.scatter(x=flops_res.values(), y=eval_res.values(), hover_name=names)
fig.update_layout(
title=f"SN-Netv2 - Stitch ID - {stitch_id}",
title_x=0.5,
xaxis_title="GFLOPs",
yaxis_title="Top-1 Acc (%)",
font=dict(
family="Courier New, monospace",
size=18,
color="RebeccaPurple"
),
legend=dict(
yanchor="bottom",
y=0.99,
xanchor="left",
x=0.01),
)
# continent, DarkSlateGrey
fig.update_traces(marker=dict(size=10,
line=dict(width=2)),
selector=dict(mode='markers'))
fig.add_scatter(x=[flops_res[stitch_id]], y=[eval_res[stitch_id]], mode='markers', marker=dict(size=15),
name='Current Stitch')
return fig
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
def process_image(image, stitch_id):
# inp = torch.from_numpy(image).permute(2, 0, 1).float()
inp = transform(image).unsqueeze(0).to(device)
model.reset_stitch_id(stitch_id)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
fig = visualize_stitch_pos(stitch_id)
return confidences, fig
with gr.Blocks() as main_page:
with gr.Column():
gr.HTML("""
<h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; ">Stitched ViTs are Flexible Vision Backbones</h1>
<div align="center"> <img align="center" src='file/gradio_banner.png' width="70%"> </div>
<h3 align="center" >This is the classification demo page of SN-Netv2, a flexible vision backbone that allows for 100+ runtime speed and performance trade-offs. You can also run this gradio demo on your local GPUs at <a href="https://github.com/ziplab/SN-Netv2">https://github.com/ziplab/SN-Netv2</a>, Paper link: <a href="https://arxiv.org/abs/2307.00154">https://arxiv.org/abs/2307.00154</a>.</h3>
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type='pil')
stitch_slider = gr.Slider(minimum=0, maximum=134, step=1, label="Stitch ID")
with gr.Row():
clear_button = gr.ClearButton()
submit_button = gr.Button()
with gr.Column():
label_output = gr.Label(num_top_classes=5)
stitch_plot = gr.Plot(label='Stitch Position')
submit_button.click(
fn=process_image,
inputs=[image_input, stitch_slider],
outputs=[label_output, stitch_plot],
)
stitch_slider.change(
fn=visualize_stitch_pos,
inputs=[stitch_slider],
outputs=[stitch_plot],
show_progress=False
)
clear_button.click(
lambda: [None, 0, None, None],
outputs=[image_input, stitch_slider, label_output, stitch_plot],
)
gr.Examples(
[
['demo.jpg', 0],
],
inputs=[
image_input,
stitch_slider
],
outputs=[
label_output,
stitch_plot
],
)
main_page.launch(allowed_paths=['./'])
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
setattr(args, 'config', f'gradio_demo.json')
if args.config is not None:
config_args = json.load(open(args.config))
override_keys = {arg[2:].split('=')[0] for arg in sys.argv[1:]
if arg.startswith('--')}
for k, v in config_args.items():
if k not in override_keys:
setattr(args, k, v)
output_dir = os.path.join('outputs', args.exp_name)
Path(output_dir).mkdir(parents=True, exist_ok=True)
checkpoint_path = os.path.join(output_dir, 'checkpoint.pth')
if os.path.exists(checkpoint_path) and not args.resume:
setattr(args, 'resume', checkpoint_path)
setattr(args, 'output_dir', output_dir)
main(args)