Spaces:
Configuration error
Configuration error
import onnxruntime | |
import cv2 | |
import numpy as np | |
import argparse | |
# The common resume photo size is 35mmx45mm | |
RESUME_PHOTO_W = 350 | |
RESUME_PHOTO_H = 450 | |
# modified from https://github.com/opencv/opencv_zoo/blob/main/models/face_detection_yunet/yunet.py | |
class YuNet: | |
def __init__( | |
self, | |
modelPath, | |
inputSize=[320, 320], | |
confThreshold=0.6, | |
nmsThreshold=0.3, | |
topK=5000, | |
backendId=0, | |
targetId=0, | |
): | |
self._modelPath = modelPath | |
self._inputSize = tuple(inputSize) # [w, h] | |
self._confThreshold = confThreshold | |
self._nmsThreshold = nmsThreshold | |
self._topK = topK | |
self._backendId = backendId | |
self._targetId = targetId | |
self._model = cv2.FaceDetectorYN.create( | |
model=self._modelPath, | |
config="", | |
input_size=self._inputSize, | |
score_threshold=self._confThreshold, | |
nms_threshold=self._nmsThreshold, | |
top_k=self._topK, | |
backend_id=self._backendId, | |
target_id=self._targetId, | |
) | |
def name(self): | |
return self.__class__.__name__ | |
def setBackendAndTarget(self, backendId, targetId): | |
self._backendId = backendId | |
self._targetId = targetId | |
self._model = cv2.FaceDetectorYN.create( | |
model=self._modelPath, | |
config="", | |
input_size=self._inputSize, | |
score_threshold=self._confThreshold, | |
nms_threshold=self._nmsThreshold, | |
top_k=self._topK, | |
backend_id=self._backendId, | |
target_id=self._targetId, | |
) | |
def setInputSize(self, input_size): | |
self._model.setInputSize(tuple(input_size)) | |
def infer(self, image): | |
# Forward | |
faces = self._model.detect(image) | |
return faces[1] | |
class ONNXModel: | |
def __init__(self, model_path, input_w, input_h): | |
self.model = onnxruntime.InferenceSession(model_path) | |
self.input_w = input_w | |
self.input_h = input_h | |
def preprocess(self, rgb, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)): | |
# convert the input data into the float32 input | |
img_data = ( | |
np.array(cv2.resize(rgb, (self.input_w, self.input_h))) | |
.transpose(2, 0, 1) | |
.astype("float32") | |
) | |
# normalize | |
norm_img_data = np.zeros(img_data.shape).astype("float32") | |
for i in range(img_data.shape[0]): | |
norm_img_data[i, :, :] = img_data[i, :, :] / 255 | |
norm_img_data[i, :, :] = (norm_img_data[i, :, :] - mean[i]) / std[i] | |
# add batch channel | |
norm_img_data = norm_img_data.reshape(1, 3, self.input_h, self.input_w).astype( | |
"float32" | |
) | |
return norm_img_data | |
def forward(self, image): | |
input_data = self.preprocess(image) | |
output_data = self.model.run(["argmax_0.tmp_0"], {"x": input_data}) | |
return output_data | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Resume Photo Maker") | |
parser.add_argument( | |
"--background_color", | |
"-bg", | |
nargs="+", | |
type=int, | |
default=(255, 255, 255), | |
help="Set the background color RGB values.", | |
) | |
parser.add_argument( | |
"--image", "-i", type=str, default="images/elon.jpg", help="Input image path." | |
) | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = parse_args() | |
bgr = cv2.imread(args.image) | |
h, w, _ = bgr.shape | |
# Initialize models | |
face_detector = YuNet("models/face_detection_yunet_2023mar.onnx") | |
face_detector.setInputSize([w, h]) | |
human_segmentor = ONNXModel( | |
"models/human_pp_humansegv2_lite_192x192_inference_model.onnx", 192, 192 | |
) | |
# yunet uses opencv bgr image format | |
detections = face_detector.infer(bgr) | |
for idx, det in enumerate(detections): | |
# bounding box | |
pt1 = np.array((det[0], det[1])) | |
pt2 = np.array((det[0] + det[2], det[1] + det[3])) | |
# face landmarks | |
landmarks = det[4:14].reshape((5, 2)) | |
right_eye = landmarks[0] | |
left_eye = landmarks[1] | |
angle = np.arctan2(right_eye[1] - left_eye[1], (right_eye[0] - left_eye[0])) | |
rmat = cv2.getRotationMatrix2D((0, 0), -angle, 1) | |
# apply rotation | |
rotated_bgr = cv2.warpAffine(bgr, rmat, (bgr.shape[1], bgr.shape[0])) | |
rotated_pt1 = rmat[:, :-1] @ pt1 | |
rotated_pt2 = rmat[:, :-1] @ pt2 | |
face_w, face_h = rotated_pt2 - rotated_pt1 | |
up_length = int(face_h / 4) | |
down_length = int(face_h / 3) | |
crop_h = face_h + up_length + down_length | |
crop_w = int(crop_h * (RESUME_PHOTO_W / RESUME_PHOTO_H)) | |
pt1 = np.array( | |
(rotated_pt1[0] - (crop_w - face_w) / 2, rotated_pt1[1] - up_length) | |
).astype(np.int32) | |
pt2 = np.array((pt1[0] + crop_w, pt1[1] + crop_h)).astype(np.int32) | |
resume_photo = rotated_bgr[pt1[1] : pt2[1], pt1[0] : pt2[0], :] | |
rgb = cv2.cvtColor(resume_photo, cv2.COLOR_BGR2RGB) | |
mask = human_segmentor.forward(rgb) | |
mask = mask[0].transpose(1, 2, 0) | |
mask = cv2.resize( | |
mask.astype(np.uint8), (resume_photo.shape[1], resume_photo.shape[0]) | |
) | |
resume_photo[mask == 0] = args.background_color | |
resume_photo = cv2.resize(resume_photo, (RESUME_PHOTO_W, RESUME_PHOTO_H)) | |
cv2.imwrite(f"masked_resume_photo_{idx}.jpg", resume_photo) | |