File size: 13,368 Bytes
5535d25
897250e
 
561a0db
 
 
 
 
 
 
 
5aa1276
561a0db
897250e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aa1276
 
 
 
 
 
 
 
 
 
 
 
b91bc9f
5aa1276
95e6c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d2a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897250e
 
664d0de
897250e
 
 
 
 
 
 
 
 
 
5aa1276
1481eaa
 
 
 
897250e
 
 
bc4edec
 
 
 
 
 
897250e
 
 
 
 
 
 
 
 
 
 
561a0db
897250e
 
561a0db
 
 
897250e
 
 
 
 
 
561a0db
5aa1276
 
b91bc9f
5aa1276
2f33806
 
 
 
c7fa677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774748a
c7fa677
 
 
 
 
 
 
 
774748a
c7fa677
 
 
 
 
 
 
 
95e6c0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
import os
import json

from transformers import GPT2Tokenizer, GPT2LMHeadModel, BertTokenizer, BertModel,T5Tokenizer, T5ForConditionalGeneration,AutoTokenizer, AutoModelForSeq2SeqLM

import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords

def is_new_file_upload(uploaded_file):
    if 'last_uploaded_file' in st.session_state:
        # Check if the newly uploaded file is different from the last one
        if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or
                uploaded_file.size != st.session_state.last_uploaded_file['size']):
            st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
            # st.write("A new src image file has been uploaded.")
            return True
        else:
            # st.write("The same src image file has been re-uploaded.")
            return False
    else:
        # st.write("This is the first file upload detected.")
        st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
        return True
def combined_similarity(similarity, sentence, query):
    # Tokenize both the sentence and the query
    # sentence_words = set(sentence.split())
    # query_words = set(query.split())
    sentence_words = set(word for word in sentence.split() if word.lower() not in st.session_state.stop_words)
    query_words = set(word for word in query.split() if word.lower() not in st.session_state.stop_words)

    # Calculate the number of common words
    common_words = len(sentence_words.intersection(query_words))

    # Adjust the similarity score with the common words count
    combined_score = similarity + (common_words / max(len(query_words), 1))  # Normalize by the length of the query to keep the score between -1 and 1
    return combined_score,similarity,(common_words / max(len(query_words), 1))


def paraphrase(sentence):
  text =  "paraphrase: " + sentence + " </s>"

  encoding = st.session_state.paraphrase_tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
  input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")


  outputs = st.session_state.paraphrase_model.generate(
      input_ids=input_ids, attention_mask=attention_masks,
      max_length=256,
      do_sample=True,
      top_k=120,
      top_p=0.95,
      #early_stopping=True,
      early_stopping=False,
      #num_return_sequences=5,
      num_return_sequences=1,
      repetition_penalty=1.5

  )
  # print(f"outputs = {outputs}")
  results=[]
  for output in outputs:
    print("*")
    line = st.session_state.paraphrase_tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
    #results.append(line)
  return line

if 'is_initialized' not in st.session_state:
    st.session_state['is_initialized'] = True

    nltk.download('punkt')
    nltk.download('stopwords')
    st.session_state.stop_words = set(stopwords.words('english'))
    st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", )
    st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda')
    st.session_state.paraphrase_tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
    st.session_state.paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws").to('cuda')
    print(str(st.session_state.paraphrase_model ))
if 'list_count' in st.session_state:
    st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
    if 'paragraph_sentence_encodings' not in st.session_state:
        print("start embedding paragarphs")
        read_progress_bar = st.progress(0)
        st.session_state.paragraph_sentence_encodings = []
        for index,paragraph in enumerate(st.session_state.restored_paragraphs):
            #print(paragraph)

            progress_percentage = (index) / (st.session_state.list_count - 1)
            # print(progress_percentage)
            read_progress_bar.progress(progress_percentage)

            sentence_encodings = []
            sentences = sent_tokenize(paragraph['text'])
            for sentence in sentences:
                if sentence.strip().endswith('?'):
                    sentence_encodings.append(None)
                    continue
                if len(sentence.strip()) < 4:
                    sentence_encodings.append(None)
                    continue
                sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to('cuda')
                with torch.no_grad():
                    sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy()
                sentence_encodings.append([sentence, sentence_encoding])
                # sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()])
            st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])
        st.rerun()
big_text = """
    <div style='text-align: center;'>
        <h1 style='font-size: 30x;'>Knowledge Extraction A</h1>
    </div>
    """
    # Display the styled text
st.markdown(big_text, unsafe_allow_html=True)

uploaded_json_file = st.file_uploader("Upload a pre-processed file",
                                           type=['json'])
st.markdown(
    f'<a href="https://ikmtechnology.github.io/ikmtechnology/untethered_extracted_paragraphs.json" target="_blank">Sample 1 download and then upload to above</a>',
    unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> What is death? What is a lucid dream? What is the seat of consciousness?",unsafe_allow_html=True)
st.markdown(
f'<a href="https://ikmtechnology.github.io/ikmtechnology/the_business_case_for_ai_extracted_paragraphs.json" target="_blank">Sample 2 download and then upload to above</a>',
    unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> what does nontechnical managers worry about? what if you put all the knowledge, frameworks, and tips from this book to full use? tell me about AI agent",unsafe_allow_html=True)
if uploaded_json_file is not None:
    if is_new_file_upload(uploaded_json_file):
        print("is new file uploaded")
        if 'paraphrased_paragrpahs' in st.session_state:
            del st.session_state['paraphrased_paragrpahs']
        if 'prev_query' in st.session_state:
            del st.session_state['prev_query']
        if 'paragraph_sentence_encodings' in st.session_state:
            del st.session_state['paragraph_sentence_encodings']
        save_path = './uploaded_files'
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        with open(os.path.join(save_path, uploaded_json_file.name), "wb") as f:
            f.write(uploaded_json_file.getbuffer())  # Write the file to the specified location
            st.success(f'Saved file temp_{uploaded_json_file.name} in {save_path}')
            st.session_state.uploaded_path=os.path.join(save_path, uploaded_json_file.name)
            # st.session_state.page_count = utils.get_pdf_page_count(st.session_state.uploaded_pdf_path)
            # print("page_count=",st.session_state.page_count)
        content = uploaded_json_file.read()
        try:
            st.session_state.restored_paragraphs = json.loads(content)
            #print(data)
            # Check if the parsed data is a dictionary
            if isinstance(st.session_state.restored_paragraphs, list):
                # Count the restored_paragraphs of top-level elements
                st.session_state.list_count  = len(st.session_state.restored_paragraphs)
                st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
            else:
                st.write('The JSON content is not a dictionary.')
        except json.JSONDecodeError:
            st.write('Invalid JSON file.')
        st.rerun()

if 'paragraph_sentence_encodings' in st.session_state:
    query = st.text_input("Enter your query")

    if query:
        if 'prev_query' not in st.session_state or st.session_state.prev_query != query:
            st.session_state.prev_query = query
            if 'paraphrased_paragrpahs' in st.session_state:
                del st.session_state['paraphrased_paragrpahs']
            query_tokens = st.session_state.bert_tokenizer(query, return_tensors="pt", padding=True, truncation=True).to(
                'cuda')
            with torch.no_grad():  # Disable gradient calculation for inference
                query_encoding = st.session_state.bert_model(**query_tokens).last_hidden_state[:, 0,
                                 :].cpu().numpy()  # Move the result to CPU and convert to NumPy

            paragraph_scores = []
            sentence_scores = []
            total_count = len(st.session_state.paragraph_sentence_encodings)
            processing_progress_bar = st.progress(0)

            for index, paragraph_sentence_encoding in enumerate(st.session_state.paragraph_sentence_encodings):
                progress_percentage = index / (total_count - 1)
                processing_progress_bar.progress(progress_percentage)

                sentence_similarities = []
                for sentence_encoding in paragraph_sentence_encoding[1]:
                    if sentence_encoding:
                        similarity = cosine_similarity(query_encoding, sentence_encoding[1])[0][0]
                        combined_score, similarity_score, commonality_score = combined_similarity(similarity,
                                                                                                  sentence_encoding[0],
                                                                                                  query)
                        sentence_similarities.append((combined_score, sentence_encoding[0], commonality_score))
                        sentence_scores.append((combined_score, sentence_encoding[0]))

                sentence_similarities.sort(reverse=True, key=lambda x: x[0])

                if len(sentence_similarities) >= 3:
                    top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities[:3]])
                    top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities[:3]])
                    top_three_sentences = sentence_similarities[:3]
                elif sentence_similarities:
                    top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities])
                    top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities])
                    top_three_sentences = sentence_similarities
                else:
                    top_three_avg_similarity = 0
                    top_three_avg_commonality = 0
                    top_three_sentences = []

                top_three_texts = [s[1] for s in top_three_sentences]
                remaining_texts = [s[0] for s in paragraph_sentence_encoding[1] if s and s[0] not in top_three_texts]
                reordered_paragraph = top_three_texts + remaining_texts

                original_paragraph = ' '.join([s[0] for s in paragraph_sentence_encoding[1] if s])
                modified_paragraph = ' '.join(reordered_paragraph)




                paragraph_scores.append(
                    (top_three_avg_similarity, top_three_avg_commonality,
                     {'modified_text': modified_paragraph, 'original_text': paragraph_sentence_encoding[0]})
                )

            sentence_scores = sorted(sentence_scores, key=lambda x: x[0], reverse=True)
            st.session_state.paragraph_scores = sorted(paragraph_scores, key=lambda x: x[0], reverse=True)

        if 'paragraph_scores' in st.session_state:

            if "paraphrased_paragrpahs" not in st.session_state:
                st.session_state.paraphrased_paragrpahs = []
                processing_progress_bar=st.progress(0)
                for i, (similarity_score, commonality_score, paragraph) in enumerate(st.session_state.paragraph_scores[:5]):


                    output_1 = paraphrase(paragraph['modified_text'])
                    # print(output_1)
                    output_2 = paraphrase(output_1)
                    # print(output_2)
                    st.session_state.paraphrased_paragrpahs.append(output_2)
                    processing_progress_bar.progress(i / (len(st.session_state.paragraph_scores[:5]) - 1))
            st.write("Top scored paragraphs and their scores:")
            for i, (similarity_score, commonality_score, paragraph) in enumerate(
                    st.session_state.paragraph_scores[:5]):
                st.write("Paraphrased Paragraph: ", st.session_state.paraphrased_paragrpahs[i])
                if st.button(f"Show Original Paragraph {i + 1}", key=f"button_{i}"):
                    st.write(f"Similarity Score: {similarity_score}, Commonality Score: {commonality_score}")
                    st.write("Original Paragraph: ", paragraph['original_text'])
                # st.write("Modified Paragraph: ", paragraph['modified_text'])