File size: 8,024 Bytes
a1e5063
94aba93
fa94b9c
cde20ed
 
fa94b9c
94aba93
9c225f1
fa94b9c
94aba93
5a521e1
9c225f1
71852c2
1ac4018
aa9d7ef
a1e5063
aa9d7ef
 
0ebfc8a
57062ef
1ac4018
 
 
 
57062ef
57ca910
 
1ac4018
1d40f83
1ee4b73
 
1ac4018
 
 
e690b8a
 
1ac4018
 
 
 
 
 
0ebfc8a
a16ea65
 
 
 
 
0ebfc8a
 
 
 
 
 
 
 
c27f13b
0ebfc8a
6882935
 
0ebfc8a
6882935
94aba93
0ebfc8a
07cc877
57062ef
 
78683da
 
 
 
 
 
 
 
 
 
 
 
 
 
57062ef
 
 
 
 
78683da
 
 
 
 
 
0ebfc8a
 
 
57062ef
 
 
 
cde20ed
 
0ebfc8a
 
 
 
 
 
 
 
 
 
cde20ed
0ebfc8a
 
 
 
 
 
 
 
 
 
cde20ed
0ebfc8a
 
 
 
 
 
 
 
 
 
 
 
 
aa9d7ef
94aba93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import random
import os
import copy

from huggingface_hub import login
from transformers import pipeline
from transformers import GPT2Tokenizer, GPT2LMHeadModel
login(os.environ["HF_TOKEN"])
#https://huggingface.co/facebook/opt-1.3b
#generator = pipeline('text-generation', model="microsoft/DialoGPT-medium")
tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-medium')
original_model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-medium')
untethered_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untethered_20240225_epochs_500')
untethered_paraphrased_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untethered_20240227_epochs_350')


                                 
def create_response(input_str, 
                             # num_beams, 
                             num_return_sequences,
                             temperature,
                             repetition_penalty,
                             top_p,
                             # top_k,
                             do_sample,
                             model_name):
  print("input_str="+input_str)
  print("model_name="+str(model_name))
  # num_beams = int(num_beams)
  # print("num_beams=" + str(num_beams))
  num_return_sequences=int(num_return_sequences)                               
  print("num_return_sequences" + str(num_return_sequences))
  print("top_p" + str(top_p))
  # top_k=int(top_k)
  # print("top_k" + str(top_k))
  print("repetition_penalty" + str(repetition_penalty))
  print("temperature" + str(temperature))
  print("do_sample" + str(do_sample))
  if not do_sample:
      num_beams = 1
      print("num_beams=" + str(num_beams))
       
  encoded = tokenizer.encode_plus(input_str + tokenizer.eos_token, return_tensors="pt")
  input_ids = encoded["input_ids"]
  attention_mask = encoded["attention_mask"]


  if model_name == "original_model":      
    output_ids = original_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences )                                
  elif model_name == "untethered_model":      
    output_ids = untethered_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences )                                      
  elif model_name == "untethered_paraphrased_model":
    output_ids = untethered_paraphrased_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences )                                          
  else:
    output_ids = original_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences )
      
  outputs = model_name+"generated <br>"                                
  for output_id in output_ids:
    output = tokenizer.decode(output_id, skip_special_tokens=True)
    outputs=outputs+output+"<br/>"
  return outputs

common_input_component_list = [
    gr.Textbox(label="input text here", lines=3),
    # gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
    #             "likely ones (specified in num_beams)", value=7),
    gr.Number(label="num_return_sequences (integer)  the number of outputs selected from num_beams possible output",
                  value=5),
        gr.Number(
            label="temperature (decimal) controls the creativity or randomness of the output. A higher temperature" +
                  " (e.g., 0.9) results in more diverse and creative output, while a lower temperature (e.g., 0.2)" +
                  " makes the output more deterministic and focused",
            value=0.2),
        gr.Number(label="repetition_penalty (decimal) penalizes words that have already appeared in the output, " +
                        "making them less likely to be generated again. A higher repetition_penalty (e.g., 1.5) results" +
                        "in more varied and non-repetitive output.",
                  value=1.5),
        gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
                        " to reach a certain threshold",
                  value=0.9),
        # gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
        #                 "This means that only the tokens with the highest probabilities are considered for sampling" +
        #                 "This reduces the diversity of the generated sequences, "+
        #                 "but also makes them more likely to be coherent and fluent.",
        #           value=50),
        gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
                          "which means that it will select the word with the highest probability at each step. " +
                          "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
                          "If is set to True, the generate function will use stochastic sampling, which means that it will randomly" +
                          " select a word from the probability distribution at each step. This results in a more diverse and creative" +
                          " output, but it might also introduce errors and inconsistencies ", value=True)
    ]
common_output_component_list=[gr.Textbox(label="output response", lines=30)]
common_examples=[ 
      ["What is death?",5,0.2,1.5,0.9,True], # The first example
      ["One of the best teachers in all of life turns out to be what?",5,0.2,1.5,0.9,True], # The second example
      ["what is your most meaningful relationship?",5,0.2,1.5,0.9,True], # The third example
      ["What actually gives life meaning?",5,0.2,1.5,0.9,True]
    ]
examples = copy.deepcopy(common_examples)
for example in examples:
    example.append("original_model")
    
interface_original = gr.Interface(fn=create_response, 
    title="original",
    description="original language model, no fine tuning",
    examples=examples,
    inputs=common_input_component_list.append(gr.Textbox(label="model", lines=3, value="original_model",visible=False)),
    outputs=common_output_component_list
    )
examples = copy.deepcopy(common_examples)
for example in examples:
    example.append("untethered_model")
interface_untethered_model = gr.Interface(fn=create_response, 
    title="untethered model",
    description="language model fine tuned with'The Untethered Soul' chapter 17",
    examples=examples,
    inputs=common_input_component_list.append(gr.Textbox(label="model", lines=3, value="untethered_model",visible=False)),
    outputs=common_output_component_list
    )

examples = copy.deepcopy(common_examples)
for example in examples:
    example.append("untethered_paraphrased_model")
interface_untethered_model = gr.Interface(fn=create_response, 
    title="untethered paraphrased_model",
    description="language model fine tuned with'The Untethered Soul' chapter 17 paraphrased",
    examples=examples,
    inputs=common_input_component_list.append(gr.Textbox(label="model", lines=3, value="untethered_paraphrased_model",visible=False)),
    outputs=common_output_component_list
    )



demo = gr.TabbedInterface([interface_original, interface_untethered_model, interface_untethered_model], ["Original", "Untethered", "Untethered paraphrased"])

demo.launch()