Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import copy | |
import re | |
from api.db import ParserType | |
from io import BytesIO | |
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks, docx_question_level | |
from deepdoc.parser import PdfParser, PlainParser | |
from rag.utils import num_tokens_from_string | |
from deepdoc.parser import PdfParser, ExcelParser, DocxParser | |
from docx import Document | |
from PIL import Image | |
class Pdf(PdfParser): | |
def __init__(self): | |
self.model_speciess = ParserType.MANUAL.value | |
super().__init__() | |
def __call__(self, filename, binary=None, from_page=0, | |
to_page=100000, zoomin=3, callback=None): | |
from timeit import default_timer as timer | |
start = timer() | |
callback(msg="OCR is running...") | |
self.__images__( | |
filename if not binary else binary, | |
zoomin, | |
from_page, | |
to_page, | |
callback | |
) | |
callback(msg="OCR finished.") | |
# for bb in self.boxes: | |
# for b in bb: | |
# print(b) | |
print("OCR:", timer() - start) | |
self._layouts_rec(zoomin) | |
callback(0.65, "Layout analysis finished.") | |
print("layouts:", timer() - start) | |
self._table_transformer_job(zoomin) | |
callback(0.67, "Table analysis finished.") | |
self._text_merge() | |
tbls = self._extract_table_figure(True, zoomin, True, True) | |
self._concat_downward() | |
self._filter_forpages() | |
callback(0.68, "Text merging finished") | |
# clean mess | |
for b in self.boxes: | |
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip()) | |
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin)) | |
for i, b in enumerate(self.boxes)], tbls | |
class Docx(DocxParser): | |
def __init__(self): | |
pass | |
def get_picture(self, document, paragraph): | |
img = paragraph._element.xpath('.//pic:pic') | |
if not img: | |
return None | |
img = img[0] | |
embed = img.xpath('.//a:blip/@r:embed')[0] | |
related_part = document.part.related_parts[embed] | |
image = related_part.image | |
image = Image.open(BytesIO(image.blob)) | |
return image | |
def concat_img(self, img1, img2): | |
if img1 and not img2: | |
return img1 | |
if not img1 and img2: | |
return img2 | |
if not img1 and not img2: | |
return None | |
width1, height1 = img1.size | |
width2, height2 = img2.size | |
new_width = max(width1, width2) | |
new_height = height1 + height2 | |
new_image = Image.new('RGB', (new_width, new_height)) | |
new_image.paste(img1, (0, 0)) | |
new_image.paste(img2, (0, height1)) | |
return new_image | |
def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None): | |
self.doc = Document( | |
filename) if not binary else Document(BytesIO(binary)) | |
pn = 0 | |
last_answer, last_image = "", None | |
question_stack, level_stack = [], [] | |
ti_list = [] | |
for p in self.doc.paragraphs: | |
if pn > to_page: | |
break | |
question_level, p_text = 0, '' | |
if from_page <= pn < to_page and p.text.strip(): | |
question_level, p_text = docx_question_level(p) | |
if not question_level or question_level > 6: # not a question | |
last_answer = f'{last_answer}\n{p_text}' | |
current_image = self.get_picture(self.doc, p) | |
last_image = self.concat_img(last_image, current_image) | |
else: # is a question | |
if last_answer or last_image: | |
sum_question = '\n'.join(question_stack) | |
if sum_question: | |
ti_list.append((f'{sum_question}\n{last_answer}', last_image)) | |
last_answer, last_image = '', None | |
i = question_level | |
while question_stack and i <= level_stack[-1]: | |
question_stack.pop() | |
level_stack.pop() | |
question_stack.append(p_text) | |
level_stack.append(question_level) | |
for run in p.runs: | |
if 'lastRenderedPageBreak' in run._element.xml: | |
pn += 1 | |
continue | |
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml: | |
pn += 1 | |
if last_answer: | |
sum_question = '\n'.join(question_stack) | |
if sum_question: | |
ti_list.append((f'{sum_question}\n{last_answer}', last_image)) | |
tbls = [] | |
for tb in self.doc.tables: | |
html= "<table>" | |
for r in tb.rows: | |
html += "<tr>" | |
i = 0 | |
while i < len(r.cells): | |
span = 1 | |
c = r.cells[i] | |
for j in range(i+1, len(r.cells)): | |
if c.text == r.cells[j].text: | |
span += 1 | |
i = j | |
i += 1 | |
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>" | |
html += "</tr>" | |
html += "</table>" | |
tbls.append(((None, html), "")) | |
return ti_list, tbls | |
def chunk(filename, binary=None, from_page=0, to_page=100000, | |
lang="Chinese", callback=None, **kwargs): | |
""" | |
Only pdf is supported. | |
""" | |
pdf_parser = None | |
doc = { | |
"docnm_kwd": filename | |
} | |
doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"])) | |
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) | |
# is it English | |
eng = lang.lower() == "english" # pdf_parser.is_english | |
if re.search(r"\.pdf$", filename, re.IGNORECASE): | |
pdf_parser = Pdf() if kwargs.get( | |
"parser_config", {}).get( | |
"layout_recognize", True) else PlainParser() | |
sections, tbls = pdf_parser(filename if not binary else binary, | |
from_page=from_page, to_page=to_page, callback=callback) | |
if sections and len(sections[0]) < 3: | |
sections = [(t, l, [[0] * 5]) for t, l in sections] | |
# set pivot using the most frequent type of title, | |
# then merge between 2 pivot | |
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1: | |
max_lvl = max([lvl for _, lvl in pdf_parser.outlines]) | |
most_level = max(0, max_lvl - 1) | |
levels = [] | |
for txt, _, _ in sections: | |
for t, lvl in pdf_parser.outlines: | |
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)]) | |
tks_ = set([txt[i] + txt[i + 1] | |
for i in range(min(len(t), len(txt) - 1))]) | |
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8: | |
levels.append(lvl) | |
break | |
else: | |
levels.append(max_lvl + 1) | |
else: | |
bull = bullets_category([txt for txt, _, _ in sections]) | |
most_level, levels = title_frequency( | |
bull, [(txt, l) for txt, l, poss in sections]) | |
assert len(sections) == len(levels) | |
sec_ids = [] | |
sid = 0 | |
for i, lvl in enumerate(levels): | |
if lvl <= most_level and i > 0 and lvl != levels[i - 1]: | |
sid += 1 | |
sec_ids.append(sid) | |
# print(lvl, self.boxes[i]["text"], most_level, sid) | |
sections = [(txt, sec_ids[i], poss) | |
for i, (txt, _, poss) in enumerate(sections)] | |
for (img, rows), poss in tbls: | |
if not rows: continue | |
sections.append((rows if isinstance(rows, str) else rows[0], -1, | |
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss])) | |
def tag(pn, left, right, top, bottom): | |
if pn + left + right + top + bottom == 0: | |
return "" | |
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \ | |
.format(pn, left, right, top, bottom) | |
chunks = [] | |
last_sid = -2 | |
tk_cnt = 0 | |
for txt, sec_id, poss in sorted(sections, key=lambda x: ( | |
x[-1][0][0], x[-1][0][3], x[-1][0][1])): | |
poss = "\t".join([tag(*pos) for pos in poss]) | |
if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)): | |
if chunks: | |
chunks[-1] += "\n" + txt + poss | |
tk_cnt += num_tokens_from_string(txt) | |
continue | |
chunks.append(txt + poss) | |
tk_cnt = num_tokens_from_string(txt) | |
if sec_id > -1: | |
last_sid = sec_id | |
res = tokenize_table(tbls, doc, eng) | |
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser)) | |
return res | |
if re.search(r"\.docx$", filename, re.IGNORECASE): | |
docx_parser = Docx() | |
ti_list, tbls = docx_parser(filename, binary, | |
from_page=0, to_page=10000, callback=callback) | |
res = tokenize_table(tbls, doc, eng) | |
for text, image in ti_list: | |
d = copy.deepcopy(doc) | |
d['image'] = image | |
tokenize(d, text, eng) | |
res.append(d) | |
return res | |
else: | |
raise NotImplementedError("file type not supported yet(pdf and docx supported)") | |
if __name__ == "__main__": | |
import sys | |
def dummy(prog=None, msg=""): | |
pass | |
chunk(sys.argv[1], callback=dummy) |